circdna

Pipeline for the identification of extrachromosomal circular DNA (ecDNA) from Circle-seq, WGS, and ATAC-seq data that were generated from cancer and other eukaryotic cells.

https://github.com/nf-core/circdna

Science Score: 67.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 10 DOI reference(s) in README
  • Academic publication links
  • Committers with academic emails
    1 of 6 committers (16.7%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (9.0%) to scientific vocabulary

Keywords

ampliconarchitect ampliconsuite circle-seq circular dna eccdna ecdna extrachromosomal-circular-dna genomics nextflow nf-core pipeline workflow

Keywords from Contributors

pipelines metagenomes rna-seq rna nanopore quantification bioinformatics workflows assembly long-read-sequencing
Last synced: 4 months ago · JSON representation ·

Repository

Pipeline for the identification of extrachromosomal circular DNA (ecDNA) from Circle-seq, WGS, and ATAC-seq data that were generated from cancer and other eukaryotic cells.

Basic Info
  • Host: GitHub
  • Owner: nf-core
  • License: mit
  • Language: Python
  • Default Branch: master
  • Homepage: https://nf-co.re/circdna
  • Size: 184 MB
Statistics
  • Stars: 28
  • Watchers: 172
  • Forks: 14
  • Open Issues: 9
  • Releases: 0
Topics
ampliconarchitect ampliconsuite circle-seq circular dna eccdna ecdna extrachromosomal-circular-dna genomics nextflow nf-core pipeline workflow
Created about 4 years ago · Last pushed 9 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation

README.md

nf-core/circdna

GitHub Actions CI Status GitHub Actions Linting StatusAWS CICite with Zenodo

Nextflow run with conda run with docker run with singularity Nextflow run with conda run with docker run with singularity Launch on Nextflow Tower

Get help on Slack Follow on Twitter Watch on YouTube

Introduction

nf-core/circdna is a bioinformatics best-practice analysis pipeline for the identification of extrachromosomal circular DNAs (ecDNAs) in eukaryotic cells. The pipeline is able to process WGS, ATAC-seq data or Circle-Seq data generated from short-read sequencing technologies. Depending on the input data and selected analysis branch, nf-core/circdna is able to identify various types of ecDNAs. This includes the detection of smaller ecDNAs, often referred to as eccDNAs or microDNAs, as well as larger ecDNAs that exhibit amplification. These analyses are facilitated through the use of prominent software tools that are widely recognized in the field of ecDNA or circular DNA research.

The pipeline is built using Nextflow, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It uses Docker/Singularity containers making installation trivial and results highly reproducible. The Nextflow DSL2 implementation of this pipeline uses one container per process which makes it much easier to maintain and update software dependencies. Where possible, these processes have been submitted to and installed from nf-core/modules in order to make them available to all nf-core pipelines, and to everyone within the Nextflow community!

On release, automated continuous integration tests run the pipeline on a full-sized dataset on the AWS cloud infrastructure. This ensures that the pipeline runs on AWS, has sensible resource allocation defaults set to run on real-world datasets, and permits the persistent storage of results to benchmark between pipeline releases and other analysis sources.The results obtained from the full-sized test can be viewed on the nf-core website.

Pipeline summary

  1. Merge re-sequenced FastQ files (cat)
  2. Read QC (FastQC)
  3. Adapter and quality trimming (Trim Galore!)
  4. Map reads using BWA-MEM (BWA)
  5. Sort and index alignments (SAMtools)
  6. Choice of multiple ecDNA identification routes
    1. Circle-Map ReadExtractor -> Circle-Map Realign
    2. Circle-Map ReadExtractor -> Circle-Map Repeats
    3. CIRCexplorer2
    4. Samblaster -> Circle_finder Does not use filtered BAM file, specificied with --keep_duplicates false
    5. Identification of circular amplicons AmpliconArchitect
    6. De Novo Assembly of ecDNAs Unicycler -> Minimap2
  7. Present QC for raw reads (MultiQC)

Functionality Overview

A graphical view of the pipeline and its diverse branches can be seen below.

nf-core/circdna metromap

Usage

[!NOTE] If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with -profile test before running the workflow on actual data.

First, prepare a samplesheet with your input data that looks as follows:

samplesheet.csv:

FASTQ input data:

csv sample,fastq_1,fastq_2 CONTROL_REP1,AEG588A1_S1_L002_R1_001.fastq.gz,AEG588A1_S1_L002_R2_001.fastq.gz

BAM input data:

csv sample,bam CONTROL_REP1,AEG588A1_S1_L002_R1_001.bam

Each row represents a pair of fastq files (paired end) or a single bam file generated from paired-end reads.

Now, you can run the pipeline using:

bash nextflow run nf-core/circdna --input samplesheet.csv --outdir <OUTDIR> --genome GRCh38 -profile <docker/singularity/podman/shifter/charliecloud/conda/institute> --circle_identifier <CIRCLE_IDENTIFIER> --input_format <"FASTQ"/"BAM">

Test AmpliconSuite-Pipeline with a test data-set

To test the correct installation of the pipeline and the use of AmpliconArchitect inside the AmpliconSuite-Pipeline, a small WGS data set is uploaded to AWS and can be downloaded and used with the parameter -profile test_AA_local. You just need to specify your local paths to the aa_data_repo and the mosek_license_dir. See AmpliconSuite-Pipeline for information about the data repository and the Mosek license. To note, the Mosek license file needs to be named mosek.lic inside the mosek_license_dir.

You can test the pipeline using:

bash nextflow run nf-core/circdna -profile test_AA_local,<docker/singularity/podman/shifter/charliecloud/conda/institute> --outdir <OUTDIR> --aa_data_repo <path/to/aa_data_repo/> --mosek_license_dir <path/to/mosek_license_directory/>

Available ecDNA identifiers

Please specify the parameter circle_identifier depending on the pipeline branch used for circular DNA identifaction. Please note that some branches/software are only tested with specific NGS data sets.

Identification of putative ecDNA junctions with ATAC-seq or Circle-seq data

circle_finder uses Circle_finder > circexplorer2 uses CIRCexplorer2 > circle_map_realign uses Circle-Map Realign > circle_map_repeats uses Circle-Map Repeats for the identification of repetetive ecDNA

Identification of amplified ecDNAs with WGS data

ampliconarchitect uses AmpliconArchitect inside the AmpliconSuite-Pipeline

De novo assembly of ecDNAs with Circle-seq data

unicycler uses Unicycler for de novo assembly of ecDNAs and Minimap2 for accurate mapping of the identified circular sequences.

[!WARNING] Please provide pipeline parameters via the CLI or Nextflow -params-file option. Custom config files including those provided by the -c Nextflow option can be used to provide any configuration except for parameters; see docs.

For more details and further functionality, please refer to the usage documentation and the parameter documentation.

Pipeline output

To see the results of an example test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the output files and reports, please refer to the output documentation.

Credits

nf-core/circdna was originally written by Daniel Schreyer, University of Glasgow, Institute of Cancer Sciences, Peter Bailey Lab.

We thank the following people for their extensive assistance in the development of this pipeline:

  • Sébastian Guizard: Review and Discussion of Pipeline
  • Alex Peltzer: Code Review
  • Phil Ewels: Help in setting up the pipeline repository and directing the pipeline development
  • nf-core community: Answering all nextflow and nf-core related questions
  • Peter Bailey: Discussion of Software and Pipeline Architecture

This pipeline has been developed by Daniel Schreyer as part of the PRECODE project. PRECODE received funding from the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement No 861196.

Contributions and Support

If you would like to contribute to this pipeline, please see the contributing guidelines.

For further information or help, don't hesitate to get in touch on the Slack #circdna channel (you can join with this invite).

Citations

If you use nf-core/circdna for your analysis, please cite it using the following doi: 10.5281/zenodo.6685250

An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.

You can cite the nf-core publication as follows:

The nf-core framework for community-curated bioinformatics pipelines.

Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.

Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x.

Owner

  • Name: nf-core
  • Login: nf-core
  • Kind: organization
  • Email: core@nf-co.re

A community effort to collect a curated set of analysis pipelines built using Nextflow.

Citation (CITATIONS.md)

# nf-core/circdna: Citations

## [nf-core](https://pubmed.ncbi.nlm.nih.gov/32055031/)

> Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020 Mar;38(3):276-278. doi: 10.1038/s41587-020-0439-x. PubMed PMID: 32055031.

## [Nextflow](https://pubmed.ncbi.nlm.nih.gov/28398311/)

> Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017 Apr 11;35(4):316-319. doi: 10.1038/nbt.3820. PubMed PMID: 28398311.

## Pipeline tools

- [FastQC](https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

  > Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online].

- [MultiQC](https://pubmed.ncbi.nlm.nih.gov/27312411/)

  > Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: 10.1093/bioinformatics/btw354. Epub 2016 Jun 16. PubMed PMID: 27312411; PubMed Central PMCID: PMC5039924.

- [Samtools](http://www.htslib.org/)

  > Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009 Aug 15;25(16):2078-9. doi: 10.1093/bioinformatics/btp352. Epub 2009 Jun 8. PMID: 19505943; PMCID: PMC2723002.

- [Trimgalore](https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/)

- [BWA](https://github.com/lh3/bwa)

  > Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997.

- [Picard](https://broadinstitute.github.io/picard/)

- [Circle-Map](https://github.com/iprada/Circle-Map)

  > Prada-Luengo I, Krogh A, Maretty L, Regenberg B. Sensitive detection of circular DNAs at single-nucleotide resolution using guided realignment of partially aligned reads. BMC Bioinformatics. 2019 Dec 12;20(1):663. doi: 10.1186/s12859-019-3160-3. PMID: 31830908; PMCID: PMC6909605.

- [Unicycler](https://github.com/rrwick/Unicycler)

  > Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017 Jun 8;13(6):e1005595. doi: 10.1371/journal.pcbi.1005595. PMID: 28594827; PMCID: PMC5481147.

- [CNVKit](https://github.com/etal/cnvkit)

  > Talevich E, Shain AH, Botton T, Bastian BC. Cnvkit: genome-wide copy number detection and visualization from targeted dna sequencing. PLoS Comput Biol. 2016;12(4):e1004873. doi: 10.1371/journal.pcbi.1004873. PMID: 27100738; PMCID: PMC4839673.

- [AmpliconSuite-Pipeline](https://github.com/AmpliconSuite/AmpliconSuite-pipeline)

- [AmpliconArchitect](https://github.com/virajbdeshpande/AmpliconArchitect)

  > Deshpande V, Luebeck J, Nguyen ND, Bakhtiari M, Turner KM, Schwab R, Carter H, Mischel PS, Bafna V. Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat Commun. 2019 Jan 23;10(1):392. doi: 10.1038/s41467-018-08200-y. PMID: 30674876; PMCID: PMC6344493.

- [AmpliconClassifier](https://github.com/jluebeck/AmpliconClassifier)

  > Luebeck J, Ng AWT, Galipeau PC, Li X, Sanchez CA, Katz-Summercorn AC, Kim H, Jammula S, He Y, Lippman SM, Verhaak RGW, Maley CC, Alexandrov LB, Reid BJ, Fitzgerald RC, Paulson TG, Chang HY, Wu S, Bafna V, Mischel PS. Extrachromosomal DNA in the cancerous transformation of Barrett's oesophagus. Nature. 2023 Apr;616(7958):798-805. doi: 10.1038/s41586-023-05937-5. Epub 2023 Apr 12. PMID: 37046089; PMCID: PMC10132967.

- [Samblaster](https://github.com/GregoryFaust/samblaster)

  > Faust GG, Hall IM. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics. 2014 Sep 1;30(17):2503-5. doi: 10.1093/bioinformatics/btu314. Epub 2014 May 7. PMID: 24812344; PMCID: PMC4147885.

- [Circle_finder](https://github.com/pk7zuva/Circle_finder)

  > Kumar P, Dillon LW, Shibata Y, Jazaeri AA, Jones DR, Dutta A. Normal and Cancerous Tissues Release Extrachromosomal Circular DNA (eccDNA) into the Circulation. Mol Cancer Res. 2017 Sep;15(9):1197-1205. doi: 10.1158/1541-7786.MCR-17-0095. Epub 2017 May 26. PMID: 28550083; PMCID: PMC5581709.

- [Circexplorer2](https://circexplorer2.readthedocs.io/en/latest/)
  > Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016 Sep;26(9):1277-87. doi: 10.1101/gr.202895.115. Epub 2016 Jun 30. PMID: 27365365; PMCID: PMC5052039.

## Software packaging/containerisation tools

- [Anaconda](https://anaconda.com)

  > Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Anaconda, Nov. 2016. Web.

- [Bioconda](https://pubmed.ncbi.nlm.nih.gov/29967506/)

  > Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J; Bioconda Team. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018 Jul;15(7):475-476. doi: 10.1038/s41592-018-0046-7. PubMed PMID: 29967506.

- [BioContainers](https://pubmed.ncbi.nlm.nih.gov/28379341/)

  > da Veiga Leprevost F, Grüning B, Aflitos SA, Röst HL, Uszkoreit J, Barsnes H, Vaudel M, Moreno P, Gatto L, Weber J, Bai M, Jimenez RC, Sachsenberg T, Pfeuffer J, Alvarez RV, Griss J, Nesvizhskii AI, Perez-Riverol Y. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics. 2017 Aug 15;33(16):2580-2582. doi: 10.1093/bioinformatics/btx192. PubMed PMID: 28379341; PubMed Central PMCID: PMC5870671.

- [Docker](https://dl.acm.org/doi/10.5555/2600239.2600241)

  > Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Journal, 2014(239), 2. doi: 10.5555/2600239.2600241.

- [Singularity](https://pubmed.ncbi.nlm.nih.gov/28494014/)

  > Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS One. 2017 May 11;12(5):e0177459. doi: 10.1371/journal.pone.0177459. eCollection 2017. PubMed PMID: 28494014; PubMed Central PMCID: PMC5426675.

GitHub Events

Total
  • Issues event: 5
  • Watch event: 4
  • Issue comment event: 7
  • Push event: 3
  • Pull request event: 10
  • Fork event: 2
  • Create event: 4
Last Year
  • Issues event: 5
  • Watch event: 4
  • Issue comment event: 7
  • Push event: 3
  • Pull request event: 10
  • Fork event: 2
  • Create event: 4

Committers

Last synced: about 2 years ago

All Time
  • Total Commits: 604
  • Total Committers: 6
  • Avg Commits per committer: 100.667
  • Development Distribution Score (DDS): 0.03
Past Year
  • Commits: 142
  • Committers: 3
  • Avg Commits per committer: 47.333
  • Development Distribution Score (DDS): 0.056
Top Committers
Name Email Commits
DSchreyer d****r@w****e 586
nf-core-bot c****e@n****e 8
Phil Ewels p****s@s****e 6
Phil Ewels p****s@s****o 2
Alexander Peltzer a****r@u****m 1
Daniel Schreyer 2****S@s****k 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 19
  • Total pull requests: 48
  • Average time to close issues: 26 days
  • Average time to close pull requests: 13 days
  • Total issue authors: 14
  • Total pull request authors: 5
  • Average comments per issue: 2.79
  • Average comments per pull request: 1.35
  • Merged pull requests: 29
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 3
  • Pull requests: 3
  • Average time to close issues: 1 day
  • Average time to close pull requests: about 2 months
  • Issue authors: 3
  • Pull request authors: 1
  • Average comments per issue: 0.0
  • Average comments per pull request: 0.67
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • ipstone (3)
  • SPPearce (2)
  • ShixiangWang (2)
  • jluebeck (2)
  • madagiurgiu25 (2)
  • liu-zhiyang (1)
  • ZabalaAitor (1)
  • daianna21 (1)
  • imrjesh (1)
  • ShiganLuo (1)
  • uretaj (1)
  • jen-reeve (1)
  • tjbencomo (1)
  • lasseringstedmark (1)
  • paulemnah (1)
Pull Request Authors
  • DSchreyer (32)
  • nf-core-bot (24)
  • ewels (3)
  • jluebeck (1)
  • apeltzer (1)
Top Labels
Issue Labels
bug (15) enhancement (6)
Pull Request Labels

Dependencies

.github/workflows/awsfulltest.yml actions
  • nf-core/tower-action v3 composite
.github/workflows/awstest.yml actions
  • nf-core/tower-action v3 composite
.github/workflows/branch.yml actions
  • mshick/add-pr-comment v1 composite
.github/workflows/ci.yml actions
  • actions/checkout v2 composite
.github/workflows/fix-linting.yml actions
  • actions/checkout v3 composite
  • actions/setup-node v2 composite
.github/workflows/linting.yml actions
  • actions/checkout v2 composite
  • actions/setup-node v2 composite
  • actions/setup-python v3 composite
  • actions/upload-artifact v2 composite
.github/workflows/linting_comment.yml actions
  • dawidd6/action-download-artifact v2 composite
  • marocchino/sticky-pull-request-comment v2 composite
.github/workflows/build-docker-image.yml actions
  • actions/checkout v3 composite
  • docker/build-push-action v4 composite
  • docker/login-action v2 composite
.github/workflows/clean-up.yml actions
  • actions/stale v7 composite
modules/local/bwa/mem/meta.yml cpan
modules/local/samtools/flagstat/meta.yml cpan
modules/local/samtools/idxstats/meta.yml cpan
modules/nf-core/bwa/index/meta.yml cpan
modules/nf-core/cat/fastq/meta.yml cpan
modules/nf-core/custom/dumpsoftwareversions/meta.yml cpan
modules/nf-core/fastqc/meta.yml cpan
modules/nf-core/minimap2/align/meta.yml cpan
modules/nf-core/multiqc/meta.yml cpan
modules/nf-core/picard/markduplicates/meta.yml cpan
modules/nf-core/samtools/faidx/meta.yml cpan
modules/nf-core/samtools/flagstat/meta.yml cpan
modules/nf-core/samtools/idxstats/meta.yml cpan
modules/nf-core/samtools/index/meta.yml cpan
modules/nf-core/samtools/sort/meta.yml cpan
modules/nf-core/samtools/stats/meta.yml cpan
modules/nf-core/samtools/view/meta.yml cpan
modules/nf-core/trimgalore/meta.yml cpan
subworkflows/nf-core/bam_markduplicates_picard/meta.yml cpan
subworkflows/nf-core/bam_stats_samtools/meta.yml cpan
modules/local/ampliconsuite/Dockerfile docker
  • python 3.10 build
pyproject.toml pypi