mhcquant

Identify and quantify MHC eluted peptides from mass spectrometry raw data

https://github.com/nf-core/mhcquant

Science Score: 77.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 25 DOI reference(s) in README
  • Academic publication links
    Links to: sciencedirect.com, nature.com, acs.org
  • Committers with academic emails
    12 of 33 committers (36.4%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (9.2%) to scientific vocabulary

Keywords

dda immunopeptidomics mass-spectrometry mhc nextflow nf-core openms peptides pipeline workflow

Keywords from Contributors

metagenomics pipelines workflows bioinformatics rna-seq rna illumina taxonomic-profiling taxonomic-classification rrna
Last synced: 6 months ago · JSON representation ·

Repository

Identify and quantify MHC eluted peptides from mass spectrometry raw data

Basic Info
  • Host: GitHub
  • Owner: nf-core
  • License: mit
  • Language: Nextflow
  • Default Branch: master
  • Homepage: https://nf-co.re/mhcquant
  • Size: 26.1 MB
Statistics
  • Stars: 38
  • Watchers: 105
  • Forks: 29
  • Open Issues: 8
  • Releases: 24
Topics
dda immunopeptidomics mass-spectrometry mhc nextflow nf-core openms peptides pipeline workflow
Created over 7 years ago · Last pushed 7 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation Codeowners

README.md

nf-core/mhcquant

GitHub Actions CI Status GitHub Actions Linting StatusAWS CICite with Zenodo nf-test

Nextflow run with conda run with docker run with singularity Launch on Seqera Platform

Get help on SlackFollow on TwitterFollow on MastodonWatch on YouTube

Introduction

nfcore/mhcquant is a best-practice bioinformatics pipeline to process data-dependent acquisition (DDA) immunopeptidomics data. This involves mass spectrometry-based identification and quantification of immunopeptides presented on major histocompatibility complex (MHC) molecules which mediate T cell immunosurveillance. Immunopeptidomics has central implications for clinical research, in the context of T cell-centric immunotherapies.

The pipeline is based on the OpenMS C++ framework for computational mass spectrometry. Spectrum files (mzML/Thermo raw/Bruker tdf) serve as inputs and a database search (Comet) is performed based on a given input protein database. Peptide properties are predicted by MS²Rescore. FDR rescoring is applied using Percolator based on a competitive target-decoy approach. For label free quantification all input files undergo identification-based retention time alignment, and targeted feature extraction matching ids between runs.

overview

The pipeline is built using Nextflow, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It uses Docker/Singularity containers making installation trivial and results highly reproducible. The Nextflow DSL2 implementation of this pipeline uses one container per process which makes it much easier to maintain and update software dependencies. Where possible, these processes have been submitted to and installed from nf-core/modules in order to make them available to all nf-core pipelines, and to everyone within the Nextflow community!

On release, automated continuous integration tests run the pipeline on a full-sized dataset on the AWS cloud infrastructure. This ensures that the pipeline runs on AWS, has sensible resource allocation defaults set to run on real-world datasets, and permits the persistent storage of results to benchmark between pipeline releases and other analysis sources. The results obtained from the full-sized test can be viewed on the nf-core website.

Usage

[!NOTE] If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with -profile test before running the workflow on actual data.

First, prepare a samplesheet with your input data that looks as follows:

samplesheet.tsv

tsv title="samplesheet.tsv ID Sample Condition ReplicateFileName 1 tumor treated /path/to/msrun1.raw|mzML|d 2 tumor treated /path/to/msrun2.raw|mzML|d 3 tumor untreated /path/to/msrun3.raw|mzML|d 4 tumor untreated /path/to/msrun4.raw|mzML|d

Each row represents a mass spectrometry run in one of the formats: raw, RAW, mzML, mzML.gz, d, d.tar.gz, d.zip

Now, you can run the pipeline using:

bash nextflow run nf-core/mhcquant -profile <docker/singularity/.../institute> \ --input 'samplesheet.tsv' \ --fasta 'SWISSPROT_2020.fasta' \ --outdir ./results

[!WARNING] Please provide pipeline parameters via the CLI or Nextflow -params-file option. Custom config files including those provided by the -c Nextflow option can be used to provide any configuration except for parameters; see docs.

For more details and further functionality, please refer to the usage documentation and the parameter documentation.

Pipeline summary

Default Steps

By default the pipeline currently performs identification of MHC class I peptides with HCD settings:

  • Preparing spectra dependent on the input format (PrepareSpectra)
  • Creation of reversed decoy database (DecoyDatabase)
  • Identification of peptides in the MS/MS spectra (CometAdapter)
  • Refreshes the protein references for all peptide hits and adds target/decoy information (PeptideIndexer)
  • Merges identification files with the same Sample and Condition label (IDMerger)
  • Prediction of retention times and MS2 intensities (MS²Rescore)
  • Extract PSM features for Percolator (PSMFeatureExtractor)
  • Peptide-spectrum-match rescoring using Percolator (PercolatorAdapter)
  • Filters peptide identification result according to 1\% FDR (IDFilter)
  • Converts identification result to tab-separated files (TextExporter)
  • Converts identification result to mzTab files (MzTabExporter)

Additional Steps

Additional functionality contained by the pipeline currently includes:

Quantification

  • Corrects retention time distortions between runs (MapAlignerIdentification)
  • Applies retention time transformations to runs (MapRTTransformer)
  • Detects features in MS1 data based on peptide identifications (FeatureFinderIdentification)
  • Group corresponding features across label-free experiments (FeatureLinkerUnlabeledKD)
  • Resolves ambiguous annotations of features with peptide identifications (IDConflictResolver)

Output

  • Annotates final list of peptides with their respective ions and charges (IonAnnotator)

Documentation

To see the the results of a test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the output files and reports, please refer to the output documentation.

  1. Nextflow installation
  2. Pipeline configuration
  3. Running the pipeline
    • This includes tutorials, FAQs, and troubleshooting instructions
  4. Output and how to interpret the results

Credits

nf-core/mhcquant was originally written by Leon Bichmann from the Kohlbacher Lab. The pipeline was re-written in Nextflow DSL2 by Marissa Dubbelaar and was significantly improved by Jonas Scheid and Steffen Lemke from Peptide-based Immunotherapy and Quantitative Biology Center in Tübingen.

Helpful contributors:

Contributions and Support

If you would like to contribute to this pipeline, please see the contributing guidelines.

For further information or help, don't hesitate to get in touch on the Slack #mhcquant channel (you can join with this invite).

Citations

If you use nf-core/mhcquant for your analysis, please cite it using the following doi: 10.5281/zenodo.1569909 and the corresponding manuscript:

MHCquant: Automated and Reproducible Data Analysis for Immunopeptidomics

Leon Bichmann, Annika Nelde, Michael Ghosh, Lukas Heumos, Christopher Mohr, Alexander Peltzer, Leon Kuchenbecker, Timo Sachsenberg, Juliane S. Walz, Stefan Stevanović, Hans-Georg Rammensee & Oliver Kohlbacher

Journal of Proteome Research 2019 18 (11), 3876-3884. doi: 10.1021/acs.jproteome.9b00313

An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.

You can cite the nf-core publication as follows:

The nf-core framework for community-curated bioinformatics pipelines.

Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.

Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x.

In addition, references of tools and data used in this pipeline are as follows:

OpenMS framework

Pfeuffer J. et al, Nat Methods 2024 Mar;21(3):365-367. doi: 0.1038/s41592-024-02197-7.

Comet Search Engine

Eng J.K. et al, J Am Soc Mass Spectrom. 2015 Nov;26(11):1865-74. doi: 10.1007/s13361-015-1179-x.

Retention time prediction

Bouwmeester R. et al, Nature Methods 2021 Oct;18(11):1363-1369. doi: 10.1038/s41592-021-01301-5

MS² Peak intensity prediction

Declercq A. et al, Nucleic Acids Res. 2023 Jul 5;51(W1):W338-W342. doi: 10.1093/nar/gkad335

CCS prediction

Declercq A. et al Journal of Proteome Research 2025 Feb 6. doi: 10.1021/acs.jproteome.4c00609

MS²Rescore framework

Buur L. M. et al, _J Proteome Res. 2024 Mar 16. doi: 10.1021/acs.jproteome.3c00785

Percolator

Käll L. et al, Nat Methods 2007 Nov;4(11):923-5. doi: 10.1038/nmeth1113.

Identification based RT Alignment

Weisser H. et al, J Proteome Res. 2013 Apr 5;12(4):1628-44. doi: 10.1021/pr300992u

Targeted peptide quantification

Weisser H. et al, J Proteome Res. 2017 Aug 4;16(8):2964-2974. doi: 10.1021/acs.jproteome.7b00248

Owner

  • Name: nf-core
  • Login: nf-core
  • Kind: organization
  • Email: core@nf-co.re

A community effort to collect a curated set of analysis pipelines built using Nextflow.

Citation (CITATIONS.md)

# nf-core/mhcquant: Citations

## [nf-core](https://pubmed.ncbi.nlm.nih.gov/32055031/)

> Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020 Mar;38(3):276-278. doi: 10.1038/s41587-020-0439-x. PubMed PMID: 32055031.

## [Nextflow](https://pubmed.ncbi.nlm.nih.gov/28398311/)

> Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017 Apr 11;35(4):316-319. doi: 10.1038/nbt.3820. PubMed PMID: 28398311.

## Pipeline tools

- [OpenMS](https://pubmed.ncbi.nlm.nih.gov/27575624/)

  > Röst H, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti S, Ehrlich HC, Gutenbrunner P, Kenar E, Liang X, Nahnsen S, Nilse L, Pfeuffer J, Rosenberger G, Rurik M, Schmitt U, Veit J, Walze M, Wojnar D, Wolski WE, Schilling O, Choudhary JS, Malmström L, Aebersold R, Reinert K, Kohlbacher O. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods 13 741–748 (2016). doi: 10.1038/nmeth.3959. PubMed PMID: 27575624

- [Comet](https://pubmed.ncbi.nlm.nih.gov/26115965/)

  > Eng JK, Hoopmann MR, Jahan TA, Egertson JD, Noble WS, MacCoss MJ. A Deeper Look into Comet—Implementation and Features. Journal of the American Society for Mass Spectrometry 26,11 1865-1874 (2015). doi: 10.1007/s13361-015-1179-x. PMID: 26115965

- [DeepLC](https://pubmed.ncbi.nlm.nih.gov/34711972/)

  > Bouwmeester R, Gabriels R, Hulstaert N, Martens L, Degroeve S. DeepLC can predict retention times for peptides that carry as-yet unseen modifications. Nature Methods 18,11 1363-1369 (2021). doi:1 0.1038/s41592-021-01301-5. PMID: 34711972

- [MS²PIP](https://pubmed.ncbi.nlm.nih.gov/31028400/)

  > Gabriels R, Martens L, Degroeve S. Updated MS²PIP web server delivers fast and accurate MS² peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques. Nucleic Acids Res. 2019 Jul 2;47(W1):W295-W299. doi: 10.1093/nar/gkz299. PMID: 31028400; PMCID: PMC6602496.

- [Ionmob](https://pubmed.ncbi.nlm.nih.gov/37540201/)

  > Teschner D, Gomez-Zepeda D, Declercq A, Łącki MK, Avci S, Bob K, Distler U, Michna T, Martens L, Tenzer S, Hildebrandt A. Ionmob: a Python package for prediction of peptide collisional cross-section values. Bioinformatics. 2023 Sep 2;39(9):btad486. doi: 10.1093/bioinformatics/btad486. PMID: 37540201; PMCID: PMC10521631.

- [MS²Rescore](https://pubmed.ncbi.nlm.nih.gov/35803561/)

  > Declercq A, Bouwmeester R, Hirschler A, Carapito C, Degroeve S, Martens L, Gabriels R. MS²Rescore: Data-Driven Rescoring Dramatically Boosts Immunopeptide Identification Rates. Mol Cell Proteomics. 2022 Aug;21(8):100266. doi: 10.1016/j.mcpro.2022.100266. Epub 2022 Jul 6. PMID: 35803561; PMCID: PMC9411678.

- [Percolator](https://pubmed.ncbi.nlm.nih.gov/31407580/)

  > Halloran JT, Zhang H, Kara K, Renggli C, The M, Zhang C, Rocke DM, Käll L, Noble WS. Speeding Up Percolator. J Proteome Res. 2019 Sep 6;18(9):3353-3359. doi: 10.1021/acs.jproteome.9b00288. Epub 2019 Aug 23. PMID: 31407580; PMCID: PMC6884961.

- [Mokapot](https://pubmed.ncbi.nlm.nih.gov/33596079/)

  > Fondrie WE, Noble WS. mokapot: Fast and Flexible Semisupervised Learning for Peptide Detection. J Proteome Res. 2021 Apr 2;20(4):1966-1971. doi: 10.1021/acs.jproteome.0c01010. Epub 2021 Feb 17. PMID: 33596079; PMCID: PMC8022319.

- [MultiQC](https://pubmed.ncbi.nlm.nih.gov/27312411/)

> Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: 10.1093/bioinformatics/btw354. Epub 2016 Jun 16. PubMed PMID: 27312411; PubMed Central PMCID: PMC5039924.

## Software packaging/containerisation tools

- [Anaconda](https://anaconda.com)

  > Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Anaconda, Nov. 2016. Web.

- [Bioconda](https://pubmed.ncbi.nlm.nih.gov/29967506/)

  > Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J; Bioconda Team. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018 Jul;15(7):475-476. doi: 10.1038/s41592-018-0046-7. PubMed PMID: 29967506.

- [BioContainers](https://pubmed.ncbi.nlm.nih.gov/28379341/)

  > da Veiga Leprevost F, Grüning B, Aflitos SA, Röst HL, Uszkoreit J, Barsnes H, Vaudel M, Moreno P, Gatto L, Weber J, Bai M, Jimenez RC, Sachsenberg T, Pfeuffer J, Alvarez RV, Griss J, Nesvizhskii AI, Perez-Riverol Y. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics. 2017 Aug 15;33(16):2580-2582. doi: 10.1093/bioinformatics/btx192. PubMed PMID: 28379341; PubMed Central PMCID: PMC5870671.

- [Docker](https://dl.acm.org/doi/10.5555/2600239.2600241)

  > Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Journal, 2014(239), 2. doi: 10.5555/2600239.2600241.

- [Singularity](https://pubmed.ncbi.nlm.nih.gov/28494014/)

  > Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS One. 2017 May 11;12(5):e0177459. doi: 10.1371/journal.pone.0177459. eCollection 2017. PubMed PMID: 28494014; PubMed Central PMCID: PMC5426675.

GitHub Events

Total
  • Create event: 14
  • Release event: 1
  • Issues event: 27
  • Watch event: 4
  • Delete event: 1
  • Member event: 1
  • Issue comment event: 96
  • Push event: 40
  • Pull request review comment event: 74
  • Pull request review event: 69
  • Pull request event: 72
  • Fork event: 5
Last Year
  • Create event: 14
  • Release event: 1
  • Issues event: 27
  • Watch event: 4
  • Delete event: 1
  • Member event: 1
  • Issue comment event: 96
  • Push event: 40
  • Pull request review comment event: 74
  • Pull request review event: 69
  • Pull request event: 72
  • Fork event: 5

Committers

Last synced: over 2 years ago

All Time
  • Total Commits: 1,137
  • Total Committers: 33
  • Avg Commits per committer: 34.455
  • Development Distribution Score (DDS): 0.746
Past Year
  • Commits: 211
  • Committers: 10
  • Avg Commits per committer: 21.1
  • Development Distribution Score (DDS): 0.521
Top Committers
Name Email Commits
Marissa Dubbelaar m****r@g****m 289
Leon Bichmann b****n@i****e 279
Marissa Dubbelaar 7****r 234
jonasscheid j****d@u****e 101
zethson l****s@g****m 38
Steffen Lemke i****1@r****e 28
Zethson l****s@p****t 28
nf-core-bot c****e@n****e 25
Alexander Peltzer a****r@g****m 22
Leon-Bichmann L****n@g****m 21
Jonas Scheid j****d@l****e 14
SusiJo s****n@g****e 9
WackerO o****r@w****e 6
Leon Bichmann b****n@a****e 5
steffen s****e@l****e 5
Alexander Peltzer a****r@q****e 5
MaxUlysse m****a@g****m 4
Marissa Dubbelaar d****r@m****e 3
Leon Kuchenbecker k****b@i****e 3
ggabernet g****t@q****e 2
Gisela Gabernet g****t@g****m 2
Phil Ewels p****s@s****e 2
Jonas Scheid 4****d 2
Leon-Bichmann b****n@a****e 1
Sven F s****r@q****e 1
Christian Fufezan c****n@f****t 1
Jonas Scheid q****1@r****e 1
runner r****r@f****0 1
kevinmenden k****n@t****e 1
WackerO 4****O 1
and 3 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 56
  • Total pull requests: 131
  • Average time to close issues: 4 months
  • Average time to close pull requests: 8 days
  • Total issue authors: 13
  • Total pull request authors: 12
  • Average comments per issue: 1.09
  • Average comments per pull request: 1.31
  • Merged pull requests: 99
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 12
  • Pull requests: 37
  • Average time to close issues: 4 months
  • Average time to close pull requests: 5 days
  • Issue authors: 6
  • Pull request authors: 5
  • Average comments per issue: 1.25
  • Average comments per pull request: 1.08
  • Merged pull requests: 27
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • jonasscheid (27)
  • marissaDubbelaar (12)
  • SusiJo (5)
  • steffenlem (4)
  • WackerO (2)
  • sundysun99 (1)
  • yannic-chen (1)
  • Leon-Bichmann (1)
  • nvnieuwk (1)
  • charmoniumQ (1)
  • MichalStachowiakArdigen (1)
  • jen-reeve (1)
  • monicagrib (1)
  • polklin (1)
  • JuliaGraf (1)
Pull Request Authors
  • jonasscheid (66)
  • nf-core-bot (34)
  • marissaDubbelaar (31)
  • steffenlem (6)
  • SusiJo (5)
  • JuliaGraf (5)
  • Leon-Bichmann (3)
  • ricardojacomini (2)
  • WackerO (2)
  • timosachsenberg (1)
  • mashehu (1)
  • KevinMenden (1)
Top Labels
Issue Labels
enhancement (36) bug (25) suggestion next release (6) wontfix (1) help wanted (1)
Pull Request Labels
enhancement (1)

Dependencies

.github/workflows/awsfulltest.yml actions
  • actions/upload-artifact v3 composite
  • nf-core/tower-action v3 composite
.github/workflows/awstest.yml actions
  • actions/upload-artifact v3 composite
  • nf-core/tower-action v3 composite
.github/workflows/branch.yml actions
  • mshick/add-pr-comment v1 composite
.github/workflows/ci.yml actions
  • actions/checkout v2 composite
  • nf-core/setup-nextflow v1 composite
.github/workflows/fix-linting.yml actions
  • actions/checkout v3 composite
  • actions/setup-node v2 composite
.github/workflows/linting.yml actions
  • actions/checkout v2 composite
  • actions/setup-node v2 composite
  • actions/setup-python v3 composite
  • actions/upload-artifact v2 composite
  • mshick/add-pr-comment v1 composite
  • nf-core/setup-nextflow v1 composite
  • psf/black stable composite
.github/workflows/linting_comment.yml actions
  • dawidd6/action-download-artifact v2 composite
  • marocchino/sticky-pull-request-comment v2 composite
modules/nf-core/custom/dumpsoftwareversions/meta.yml cpan
modules/nf-core/multiqc/meta.yml cpan
pyproject.toml pypi
.github/workflows/clean-up.yml actions
  • actions/stale v7 composite
.github/workflows/release-announcments.yml actions
  • actions/setup-python v4 composite
  • rzr/fediverse-action master composite
  • zentered/bluesky-post-action v0.0.2 composite