clinica

Software platform for clinical neuroimaging studies

https://github.com/aramis-lab/clinica

Science Score: 67.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 5 DOI reference(s) in README
  • Academic publication links
  • Committers with academic emails
    21 of 55 committers (38.2%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (12.9%) to scientific vocabulary

Keywords

ants bids-format brainweb freesurfer fsl machine-learning mrtrix3 neuroimaging neuroscience python scikit-learn spm

Keywords from Contributors

brain-imaging standardization dataflow dataflow-programming workflow-engine mvpa fmri decoding brain-mri brain-connectivity
Last synced: 6 months ago · JSON representation ·

Repository

Software platform for clinical neuroimaging studies

Basic Info
  • Host: GitHub
  • Owner: aramis-lab
  • License: other
  • Language: Python
  • Default Branch: dev
  • Homepage: http://www.clinica.run/
  • Size: 35.4 MB
Statistics
  • Stars: 257
  • Watchers: 15
  • Forks: 88
  • Open Issues: 83
  • Releases: 47
Topics
ants bids-format brainweb freesurfer fsl machine-learning mrtrix3 neuroimaging neuroscience python scikit-learn spm
Created almost 7 years ago · Last pushed 6 months ago
Metadata Files
Readme Contributing License Citation

README.md

Logo
Clinica

Software platform for clinical neuroimaging studies

Build Status PyPI version Supported Python versions platform Code style: black Downloads

Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL, ClinicaDL

About The Project

Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data (neuroimaging, clinical and cognitive evaluations, genetics...), most often with longitudinal follow-up.

Clinica is command-line driven and written in Python. It uses the Nipype system for pipelining and combines widely-used software packages for neuroimaging data analysis (ANTs, FreeSurfer, FSL, MRtrix, PETPVC, SPM), machine learning (Scikit-learn) and the BIDS standard for data organization.

Clinica provides tools to convert publicly available neuroimaging datasets into BIDS, namely:

Clinica can process any BIDS-compliant dataset with a set of complex processing pipelines involving different software packages for the analysis of neuroimaging data (T1-weighted MRI, diffusion MRI and PET data). It also provides integration between feature extraction and statistics, machine learning or deep learning.

ClinicaPipelines

Clinica is also showcased as a framework for the reproducible classification of Alzheimer's disease using machine learning and deep learning.

Getting Started

Full instructions for installation and additional information can be found in the user documentation.

Using pipx (recommended)

Clinica can be easily installed and updated using pipx.

console pipx install clinica

Using pip

console pip install clinica

Using Conda

Clinica relies on multiple third-party tools to perform processing.

An environment file is provided in this repository to facilitate their installation in a Conda environment:

console git clone https://github.com/aramis-lab/clinica && cd clinica conda env create conda activate clinica

After activation, use pip to install Clinica.

Additional dependencies (required)

Depending on the pipeline that you want to use, you need to install pipeline-specific interfaces. Some of which uses a different runtime or use incompatible licensing terms, which prevent their distribution alongside Clinica. Not all the dependencies are necessary to run Clinica. Please refer to this page to determine which third-party libraries you need to install.

Example

Diagram illustrating the Clinica pipelines involved when performing a group comparison of FDG PET data projected on the cortical surface between patients with Alzheimer's disease and healthy controls from the ADNI database:

ClinicaExample

  1. Clinical and neuroimaging data are downloaded from the ADNI website and data are converted into BIDS with the adni-to-bids converter.
  2. Estimation of the cortical and white surface is then produced by the t1-freesurfer pipeline.
  3. FDG PET data can be projected on the subject’s cortical surface and normalized to the FsAverage template from FreeSurfer using the pet-surface pipeline.
  4. TSV file with demographic information of the population studied is given to the statistics-surface pipeline to generate the results of the group comparison.

For more examples and details, please refer to the Documentation.

Support

Contributing

We encourage you to contribute to Clinica! Please check out the Contributing to Clinica guide for guidelines about how to proceed. Do not hesitate to ask questions if something is not clear for you, report an issue, etc.

License

This software is distributed under the MIT License. See license file for more information.

Citing us

  • Routier, A., Burgos, N., Díaz, M., Bacci, M., Bottani, S., El-Rifai O., Fontanella, S., Gori, P., Guillon, J., Guyot, A., Hassanaly, R., Jacquemont, T., Lu, P., Marcoux, A., Moreau, T., Samper-González, J., Teichmann, M., Thibeau-Sutre, E., Vaillant G., Wen, J., Wild, A., Habert, M.-O., Durrleman, S., and Colliot, O.: Clinica: An Open Source Software Platform for Reproducible Clinical Neuroscience Studies Frontiers in Neuroinformatics, 2021 doi:10.3389/fninf.2021.689675

Related Repositories

Owner

  • Name: ARAMIS Lab
  • Login: aramis-lab
  • Kind: organization
  • Location: Paris, France

The Aramis Lab is a joint research team between CNRS, Inria, Inserm and Sorbonne University and belongs to the Paris Brain Institute (ICM).

Citation (CITATION.cff)

cff-version: 1.2.0
message: If you use this software, please cite it as below.
authors:
  - family-names: Routier
    given-names:  Alexandre
  - family-names: Burgos
    given-names: Ninon
  - family-names: Diaz
    given-names: Mauricio
  - family-names: Bacci
    given-names: Michael
  - family-names: Bottani
    given-names: Simona
  - family-names: El-Rifai
    given-names: Omar
  - family-names: Fontanella
    given-names: Sabrina
  - family-names: Gori
    given-names: Pietro
  - family-names: Guillon
    given-names: Jérémy
  - family-names: Guyot
    given-names: Alexis
  - family-names: Hassanaly
    given-names: Ravi
  - family-names: Jacquemont
    given-names: Thomas
  - family-names: Lu
    given-names: Pascal
  - family-names: Marcoux
    given-names: Arnaud
  - family-names: Moreau
    given-names: Tristan
  - family-names: Samper-Gonzalez
    given-names: Jorge
  - family-names: Teichmann
    given-names: Marc
  - family-names: Thibeau-Sutre
    given-names: Elina
  - family-names: Vaillant
    given-names: Ghislain
  - family-names: Wen
    given-names: Junhao
  - family-names: Wild
    given-names: Adam
  - family-names: Habert
    given-names: Marie-Odile
  - family-names: Durrleman
    given-names: Stanley
  - family-names: Colliot
    given-names: Olivier
title: "Clinica: An Open Source Software Platform for Reproducible Clinical Neuroscience Studies"
doi: 10.3389/fninf.2021.689675
license: MIT

GitHub Events

Total
  • Create event: 8
  • Release event: 5
  • Issues event: 148
  • Watch event: 25
  • Delete event: 4
  • Member event: 1
  • Issue comment event: 274
  • Push event: 108
  • Pull request review comment event: 236
  • Pull request review event: 274
  • Pull request event: 233
  • Fork event: 13
Last Year
  • Create event: 8
  • Release event: 5
  • Issues event: 148
  • Watch event: 25
  • Delete event: 4
  • Member event: 1
  • Issue comment event: 274
  • Push event: 108
  • Pull request review comment event: 236
  • Pull request review event: 274
  • Pull request event: 233
  • Fork event: 13

Committers

Last synced: 7 months ago

All Time
  • Total Commits: 3,245
  • Total Committers: 55
  • Avg Commits per committer: 59.0
  • Development Distribution Score (DDS): 0.786
Past Year
  • Commits: 177
  • Committers: 12
  • Avg Commits per committer: 14.75
  • Development Distribution Score (DDS): 0.537
Top Committers
Name Email Commits
Alexandre Routier a****r@g****m 693
Mauricio DIAZ m****z@i****r 476
Gensollen n****n@g****m 286
Nono a****x@i****r 273
Hao a****6@h****m 218
Ghislain Vaillant g****l 208
Jérémy Guillon j****n@i****r 132
jsampergonzalez j****z@g****m 128
AliceJoubert 1****t 106
Sabrina Fontanella s****a@i****g 100
omar-rifai o****d@g****m 96
michael.bacci m****i@i****r 73
simonabottani s****2@g****m 71
Matthieu Joulot 8****t 63
dependabot[bot] 4****] 35
Pietro Gori p****i@i****r 34
Elina Thibeau Sutre e****e@i****g 34
BOTTANI Simona s****i@u****g 33
GUYOT Alexis a****t@U****g 27
Thomas Jacquemont t****t@e****r 24
BOTTANI Simona s****i@i****g 17
Ninon Burgos n****s@i****r 17
Thomas JACQUEMONT (Olivier COLLIOT) j****t@H****) 12
Adam ISMAILI 1****2 11
Pascal p****u@i****g 10
Ravi Hassanaly 4****8 9
Ninon Burgos n****s@g****m 9
Elina Thibeau Sutre e****s@f****r 7
adamwild a****d@e****g 4
Ana Fouquier a****g@g****m 3
and 25 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 208
  • Total pull requests: 679
  • Average time to close issues: 3 months
  • Average time to close pull requests: 16 days
  • Total issue authors: 47
  • Total pull request authors: 24
  • Average comments per issue: 2.68
  • Average comments per pull request: 0.49
  • Merged pull requests: 551
  • Bot issues: 0
  • Bot pull requests: 40
Past Year
  • Issues: 90
  • Pull requests: 182
  • Average time to close issues: 20 days
  • Average time to close pull requests: 6 days
  • Issue authors: 19
  • Pull request authors: 16
  • Average comments per issue: 0.63
  • Average comments per pull request: 0.49
  • Merged pull requests: 130
  • Bot issues: 0
  • Bot pull requests: 2
Top Authors
Issue Authors
  • NicolasGensollen (75)
  • AliceJoubert (42)
  • omar-rifai (15)
  • ghisvail (7)
  • MatthieuJoulot (7)
  • fyb99 (7)
  • souravraha (6)
  • espentrydal (3)
  • AudreyDuran (3)
  • mtmmu88 (3)
  • ta4218 (2)
  • ravih18 (2)
  • Luoyu-Wang (2)
  • manonheff (1)
  • J-V1 (1)
Pull Request Authors
  • NicolasGensollen (381)
  • AliceJoubert (144)
  • dependabot[bot] (40)
  • ghisvail (39)
  • MatthieuJoulot (26)
  • Adam-Ismaili-92 (11)
  • HuguesRoy (6)
  • 14thibea (6)
  • ravih18 (5)
  • yarikoptic (4)
  • mdiazmel (2)
  • camillebrianceau (2)
  • likeajumprope (2)
  • msolal (1)
  • maylistran01 (1)
Top Labels
Issue Labels
bug (82) enhancement (46) converter (45) doc (32) inactive (20) good first issue (17) pipeline (11) CI (7) dependencies (5) iotools (2) duplicate (1) wontfix (1) question (1)
Pull Request Labels
converter (78) fix (68) doc (48) dependencies (47) enhancement (41) python (40) CI (37) pipeline (29) Stale (19) github_actions (10) bug (6) iotools (3) good first issue (1)

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 702 last-month
  • Total dependent packages: 1
  • Total dependent repositories: 1
  • Total versions: 48
  • Total maintainers: 4
pypi.org: clinica

Software platform for clinical neuroimaging studies

  • Versions: 48
  • Dependent Packages: 1
  • Dependent Repositories: 1
  • Downloads: 702 Last month
Rankings
Dependent packages count: 4.8%
Stargazers count: 5.0%
Forks count: 5.4%
Average: 9.3%
Downloads: 10.0%
Dependent repos count: 21.5%
Last synced: 7 months ago

Dependencies

poetry.lock pypi
  • 112 dependencies
pyproject.toml pypi
  • black * develop
  • isort * develop
  • nipy ^0.5.0 develop
  • pre-commit * develop
  • pytest * develop
  • pytest-cov ^3.0.0 develop
  • pytest-timeout * develop
  • pytest-xdist * develop
  • argcomplete ^1.9.4
  • attrs >=20.1.0
  • cattrs ^1.9.0
  • click ^8
  • click-option-group ^0.5
  • colorlog ^5
  • fsspec *
  • jinja2 ^3
  • matplotlib *
  • mkdocs ^1.1
  • mkdocs-material >=7.1.8
  • networkx *
  • nibabel ^2.3.3
  • niflow-nipype1-workflows *
  • nilearn ^0.7.0
  • nipype ^1.7.1
  • numpy ^1.17
  • openpyxl *
  • pandas ^1.2
  • pybids ^0.15.1
  • pydicom *
  • pydra ^0.18
  • pydra-nipype1 ^0.1.0
  • pymdown-extensions *
  • python >=3.8,<3.11
  • scikit-image ^0.19
  • scikit-learn ^1.0
  • scipy ^1.7
  • xgboost *
  • xlrd *
  • xvfbwrapper *
.github/workflows/lint.yaml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
  • snok/install-poetry v1 composite
.github/workflows/publish.yaml actions
  • actions/checkout v3 composite
  • snok/install-poetry v1 composite
.github/workflows/stale.yaml actions
  • actions/stale v7 composite
.github/workflows/test.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
  • snok/install-poetry v1 composite
environment.yml pypi