torchio

Medical imaging processing for AI applications.

https://github.com/torchio-project/torchio

Science Score: 77.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 5 DOI reference(s) in README
  • Academic publication links
    Links to: sciencedirect.com
  • Committers with academic emails
    5 of 57 committers (8.8%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (10.5%) to scientific vocabulary

Keywords

augmentation data-augmentation deep-learning machine-learning medical-image-analysis medical-image-computing medical-image-processing medical-images medical-imaging-datasets medical-imaging-with-deep-learning python pytorch

Keywords from Contributors

monai healthcare-imaging neuroimaging medical-imaging explainable-ai optim genomics evolutionary-algorithms particles parallel
Last synced: 6 months ago · JSON representation ·

Repository

Medical imaging processing for AI applications.

Basic Info
  • Host: GitHub
  • Owner: TorchIO-project
  • License: apache-2.0
  • Language: Python
  • Default Branch: main
  • Homepage: https://docs.torchio.org/
  • Size: 44.3 MB
Statistics
  • Stars: 2,259
  • Watchers: 18
  • Forks: 249
  • Open Issues: 33
  • Releases: 47
Topics
augmentation data-augmentation deep-learning machine-learning medical-image-analysis medical-image-computing medical-image-processing medical-images medical-imaging-datasets medical-imaging-with-deep-learning python pytorch
Created about 6 years ago · Last pushed 6 months ago
Metadata Files
Readme Contributing License Code of conduct Citation Zenodo

README.md

TorchIO logo

Tools like TorchIO are a symptom of the maturation of medical AI research using deep learning techniques.

Jack Clark, Policy Director at OpenAI (link).


Package PyPI downloads PyPI version Conda version
CI Tests status Documentation status Coverage status
Code Code style Code quality Code maintainability pre-commit
Tutorials Google Colab
Community YouTube All Contributors

Progressive artifacts

Augmentation


Original Random blur
Original Random blur
Random flip Random noise
Random flip Random noise
Random affine transformation Random elastic transformation
Random affine transformation Random elastic transformation
Random bias field artifact Random motion artifact
Random bias field artifact Random motion artifact
Random spike artifact Random ghosting artifact
Random spike artifact Random ghosting artifact

Queue

(Queue for patch-based training)


TorchIO is a Python package containing a set of tools to efficiently read, preprocess, sample, augment, and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity or k-space motion artifacts.

This package has been greatly inspired by NiftyNet, which is not actively maintained anymore.

Credits

If you like this repository, please click on Star!

If you use this package for your research, please cite our paper:

F. Pérez-García, R. Sparks, and S. Ourselin. TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Computer Methods and Programs in Biomedicine (June 2021), p. 106236. ISSN: 0169-2607.doi:10.1016/j.cmpb.2021.106236.

BibTeX entry:

bibtex @article{perez-garcia_torchio_2021, title = {{TorchIO}: a {Python} library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning}, journal = {Computer Methods and Programs in Biomedicine}, pages = {106236}, year = {2021}, issn = {0169-2607}, doi = {https://doi.org/10.1016/j.cmpb.2021.106236}, url = {https://www.sciencedirect.com/science/article/pii/S0169260721003102}, author = {P{\'e}rez-Garc{\'i}a, Fernando and Sparks, Rachel and Ourselin, S{\'e}bastien}, }

This project is supported by the following institutions:

Getting started

See Getting started for installation instructions and a Hello, World! example.

Longer usage examples can be found in the tutorials.

Read the documentation for more information.

Please create an issue if you think something is missing.

Contributors

Thanks goes to all these people (emoji key):

Fernando Pérez-García
Fernando Pérez-García

💻 📖
valabregue
valabregue

🤔 👀 💻 💬 🐛
GFabien
GFabien

💻 👀 🤔
G.Reguig
G.Reguig

💻
Niels Schurink
Niels Schurink

💻
Ibrahim Hadzic
Ibrahim Hadzic

🐛
ReubenDo
ReubenDo

🤔
Julian Klug
Julian Klug

🤔
David Völgyes
David Völgyes

🤔 💻
Jean-Christophe Fillion-Robin
Jean-Christophe Fillion-Robin

📖
Suraj Pai
Suraj Pai

🤔
Ben Darwin
Ben Darwin

🤔
Oeslle Lucena
Oeslle Lucena

🐛
Soumick Chatterjee
Soumick Chatterjee

💻
neuronflow
neuronflow

📖
Jan Witowski
Jan Witowski

📖
Derk Mus
Derk Mus

📖 💻 🐛
Christian Herz
Christian Herz

🐛
Cory Efird
Cory Efird

💻 🐛
Esteban Vaca C.
Esteban Vaca C.

🐛
Ray Phan
Ray Phan

🐛
Akis Linardos
Akis Linardos

🐛 💻
Nina Montana-Brown
Nina Montana-Brown

📖 🚇
fabien-brulport
fabien-brulport

🐛
malteekj
malteekj

🐛
Andres Diaz-Pinto
Andres Diaz-Pinto

🐛
Sarthak Pati
Sarthak Pati

📦 📖
GabriellaKamlish
GabriellaKamlish

🐛
Tyler Spears
Tyler Spears

🐛
DaGuT
DaGuT

📖
Xiangyu Zhao
Xiangyu Zhao

🐛
siahuat0727
siahuat0727

📖 🐛
Svdvoort
Svdvoort

💻
Albans98
Albans98

💻
Matthew T. Warkentin
Matthew T. Warkentin

💻
glupol
glupol

🐛
ramonemiliani93
ramonemiliani93

📖 🐛 💻
Justus Schock
Justus Schock

💻 🐛 🤔 👀
Stefan Milorad Radonjić
Stefan Milorad Radonjić

🐛
Sajan Gohil
Sajan Gohil

🐛
Ikko Ashimine
Ikko Ashimine

📖
laynr
laynr

📖
Omar U. Espejel
Omar U. Espejel

🔊
James Butler
James Butler

🐛
res191
res191

🔍
nengwp
nengwp

🐛 📖
susanveraclarke
susanveraclarke

🎨
nepersica
nepersica

🐛
Sebastian Penhouet
Sebastian Penhouet

🤔
Bigsealion
Bigsealion

🐛
Dženan Zukić
Dženan Zukić

👀
vasl12
vasl12

🐛
François Rousseau
François Rousseau

🐛
snavalm
snavalm

💻
Jacob Reinhold
Jacob Reinhold

💻
Hsu
Hsu

🐛
snipdome
snipdome

🐛
SmallY
SmallY

🐛
guigautier
guigautier

🤔
AyedSamy
AyedSamy

🐛
J. Miguel Valverde
J. Miguel Valverde

🤔 💻 🐛
José Guilherme Almeida
José Guilherme Almeida

🤔
Asim Usman
Asim Usman

🐛
cbri92
cbri92

🐛
Markus J. Ankenbrand
Markus J. Ankenbrand

🐛
Ziv Yaniv
Ziv Yaniv

📖
Luca Lumetti
Luca Lumetti

💻 📖
chagelo
chagelo

🐛
mueller-franzes
mueller-franzes

💻 🐛
Abdelwahab Kawafi
Abdelwahab Kawafi

🐛
Arthur Masson
Arthur Masson

🐛 📖
양현식
양현식

💻
nicoloesch
nicoloesch

💻 🐛 🎨 🚧 💬 👀
Amund Vedal
Amund Vedal

📖
Alabamagan
Alabamagan

🐛
sbdoherty
sbdoherty

📖
Zhack47
Zhack47

🐛
Blake Dewey
Blake Dewey

📖
Doyeon Kim
Doyeon Kim

🐛
KonoMaxi
KonoMaxi

🐛
Laurent Chauvin
Laurent Chauvin

🐛
Christian Hinge
Christian Hinge

🐛
zzz123xyz
zzz123xyz

🐛
Amin Alam
Amin Alam

📖
marius-sm
marius-sm

🤔
haarisr
haarisr

💻
Chris Winder
Chris Winder

🐛
Ricky Walsh
Ricky Walsh

💻
Keerthi Sravan Ravi
Keerthi Sravan Ravi

🐛
Rahul Kurian Jacob
Rahul Kurian Jacob

📖
Ethan Rooke
Ethan Rooke

📖
David Kucher
David Kucher

💻
StijnvWijn
StijnvWijn

💻 🐛
Toufiq
Toufiq

💻
bcrobo
bcrobo

🐛
Emmanuel Ferdman
Emmanuel Ferdman

🐛

This project follows the all-contributors specification. Contributions of any kind welcome!

Owner

  • Name: TorchIO
  • Login: TorchIO-project
  • Kind: organization
  • Location: United Kingdom

TorchIO and related repositories. Created and managed by @fepegar.

Citation (CITATION.cff)

cff-version: 1.2.0
message: If you use this software, please cite the paper using these metadata.
authors:
  - family-names: Pérez-García
    given-names: Fernando
    orcid: https://orcid.org/0000-0001-9090-3024
title: "TorchIO"
repository-code: "https://github.com/TorchIO-project/torchio"
preferred-citation:
  type: article
  authors:
  - family-names: "Pérez-García"
    given-names: "Fernando"
    orcid: https://orcid.org/0000-0001-9090-3024
  - family-names: "Sparks"
    given-names: "Rachel"
    orcid: https://orcid.org/0000-0003-1553-7903
  - family-names: "Ourselin"
    given-names: "Sébastien"
    orcid: https://orcid.org/0000-0002-5694-5340
  doi: "10.1016/j.cmpb.2021.106236"
  issn: "0169-2607"
  journal: "Computer Methods and Programs in Biomedicine"
  pages: "106236"
  title: "TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning"
  url: "https://www.sciencedirect.com/science/article/pii/S0169260721003102"
  year: 2021

GitHub Events

Total
  • Create event: 75
  • Issues event: 32
  • Release event: 15
  • Watch event: 133
  • Delete event: 47
  • Issue comment event: 118
  • Push event: 196
  • Pull request review event: 39
  • Pull request review comment event: 49
  • Pull request event: 133
  • Fork event: 13
Last Year
  • Create event: 75
  • Issues event: 32
  • Release event: 15
  • Watch event: 133
  • Delete event: 47
  • Issue comment event: 118
  • Push event: 196
  • Pull request review event: 39
  • Pull request review comment event: 49
  • Pull request event: 133
  • Fork event: 13

Committers

Last synced: 9 months ago

All Time
  • Total Commits: 1,707
  • Total Committers: 57
  • Avg Commits per committer: 29.947
  • Development Distribution Score (DDS): 0.149
Past Year
  • Commits: 131
  • Committers: 12
  • Avg Commits per committer: 10.917
  • Development Distribution Score (DDS): 0.321
Top Committers
Name Email Commits
Fernando Perez-Garcia f****r@g****m 1,452
allcontributors[bot] 4****] 103
pre-commit-ci[bot] 6****] 43
dependabot[bot] 4****] 15
GFabien 3****n 12
David Völgyes d****s@i****g 5
nicoloesch 7****h 4
Derk Mus d****s@g****m 4
Matthew T. Warkentin m****n@m****a 4
Cory Efird c****1@g****m 3
Julian Klug t****e@g****m 3
Justus Schock 1****k 3
Sarthak Pati s****i@p****u 3
valabregue r****e@u****r 3
Niels Schurink s****s@h****m 2
deepsource-autofix[bot] 6****] 2
ramonemiliani93 r****i@u****a 2
siahuat0727 t****t@g****m 2
Gustav Müller-Franzes 5****s 2
Luca Lumetti l****a@g****m 2
G.Reguig g****g@g****m 2
Blake Dewey b****y@j****u 1
Amund Vedal 2****l 1
Amin Alam m****a@g****m 1
Albans98 a****f@o****r 1
Akis Linardos l****s@g****m 1
DaGuT m****1@g****m 1
David Kucher m****r 1
Ikko Ashimine e****r@g****m 1
Chris Winder 5****r 1
and 27 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 92
  • Total pull requests: 214
  • Average time to close issues: 5 months
  • Average time to close pull requests: 11 days
  • Total issue authors: 31
  • Total pull request authors: 22
  • Average comments per issue: 2.91
  • Average comments per pull request: 0.83
  • Merged pull requests: 159
  • Bot issues: 0
  • Bot pull requests: 43
Past Year
  • Issues: 19
  • Pull requests: 166
  • Average time to close issues: 25 days
  • Average time to close pull requests: 4 days
  • Issue authors: 16
  • Pull request authors: 13
  • Average comments per issue: 2.16
  • Average comments per pull request: 0.64
  • Merged pull requests: 137
  • Bot issues: 0
  • Bot pull requests: 39
Top Authors
Issue Authors
  • fepegar (52)
  • romainVala (10)
  • HaoLi12345 (2)
  • ivezakis (1)
  • c-winder (1)
  • Jesse-Phitidis (1)
  • bcdarwin (1)
  • LucaLumetti (1)
  • StijnvWijn (1)
  • rousseau (1)
  • LvanderGoten (1)
  • clarkbab (1)
  • mueller-franzes (1)
  • themantalope (1)
  • schomakers (1)
Pull Request Authors
  • fepegar (125)
  • pyup-bot (16)
  • dependabot[bot] (15)
  • allcontributors[bot] (15)
  • pre-commit-ci[bot] (13)
  • Copilot (4)
  • romainVala (4)
  • jxchen01 (2)
  • nicoloesch (2)
  • StijnvWijn (2)
  • toufiqmusah (2)
  • mueller-franzes (2)
  • RJacobArthrex (2)
  • rickymwalsh (2)
  • emmanuel-ferdman (1)
Top Labels
Issue Labels
enhancement (48) bug (17) documentation (7) good first issue (3) question (2) help wanted (2) tests (1)
Pull Request Labels
dependencies (15) github_actions (8) enhancement (3)

Packages

  • Total packages: 2
  • Total downloads:
    • pypi 87,806 last-month
  • Total docker downloads: 73
  • Total dependent packages: 20
    (may contain duplicates)
  • Total dependent repositories: 81
    (may contain duplicates)
  • Total versions: 326
  • Total maintainers: 1
pypi.org: torchio

Tools for medical image processing with PyTorch

  • Versions: 274
  • Dependent Packages: 19
  • Dependent Repositories: 79
  • Downloads: 87,806 Last month
  • Docker Downloads: 73
Rankings
Dependent packages count: 0.6%
Stargazers count: 1.6%
Downloads: 1.6%
Dependent repos count: 1.7%
Average: 2.0%
Docker downloads count: 2.8%
Forks count: 3.5%
Maintainers (1)
Last synced: 6 months ago
conda-forge.org: torchio

TorchIO is a Python package containing a set of tools to efficiently read, preprocess, sample, augment, and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity or k-space motion artifacts.

  • Versions: 52
  • Dependent Packages: 1
  • Dependent Repositories: 2
Rankings
Stargazers count: 9.8%
Forks count: 12.5%
Average: 17.9%
Dependent repos count: 20.3%
Dependent packages count: 29.0%
Last synced: 6 months ago