statistical-measures

This repository contains a statistical analysis of customer service ratings for Biscobis Ltd

https://github.com/quantum-software-development/statistical-measures

Science Score: 44.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.5%) to scientific vocabulary

Keywords

machine-learning mathematics mathp mathplotlib measurements numpy pandas puthon3 seaborn statisctics

Keywords from Contributors

interactive mesh interpretability profiles sequences generic projection standardization optim embedded
Last synced: 4 months ago · JSON representation ·

Repository

This repository contains a statistical analysis of customer service ratings for Biscobis Ltd

Basic Info
Statistics
  • Stars: 2
  • Watchers: 0
  • Forks: 2
  • Open Issues: 2
  • Releases: 0
Topics
machine-learning mathematics mathp mathplotlib measurements numpy pandas puthon3 seaborn statisctics
Created over 1 year ago · Last pushed 4 months ago
Metadata Files
Readme Funding License Citation

README.md


[🇧🇷 Português] [🇺🇸 English]



✍️ Statistical Measures and Bovespa Banks Value Analysis : Calculation in Excel and Python for Data Science

University of Data Science and Artificial Intelligence - PUC-SP - 2nd Semester/2024



🎶 Prelude Suite no.1 (J. S. Bach) - Sound Design Remix

https://github.com/user-attachments/assets/4ccd316b-74a1-4bae-9bc7-1c705be80498

📺 For better resolution, watch the video on YouTube.



Sponsor Quantum Software Development



Introduction

Welcome to the "Comprehensive Statistical Analysis of Biscobis Dataset" repository. This repository aims to conduct a detailed statistical analysis of the biscobis-statistical-measures.csv dataset, covering various measures such as mean, median, mode, minimum, maximum, range, variance, standard deviation, and coefficient of variation.

Project Overview

This repository presents a statistical analysis of customer service ratings for Biscobis Ltd., based on a survey of 100 customers who evaluated seven different aspects of the company's services.

Setup

To use this repository, ensure you have Python installed on your system along with the Pandas and NumPy libraries. Clone this repository and place your biscobis-statistical-measures.csv file in the root directory.

Dataset

Click here to download the dataset

The dataset biscobis-statistical-measures.csv contains customer ratings for the following categories:

  1. Shipping speed
  2. Price level
  3. Negotiation flexibility
  4. Image
  5. Services provided
  6. Sales force
  7. Product quality

Python Code for Statistical Analysis

This project provides three Python scripts for analyzing Biscobis customer service data: a concise version for quick analysis, a comprehensive script for calculating statistical measures, and a detailed version for in-depth insights..

Concise Python Code for Quick Analysis

This concise code quickly calculates and outputs the main statistical measures and is perfect for quick analyses or when you need a rapid overview of the data's statistical properties.

```python import pandas as pd

Load the dataset

data = pd.read_csv('biscobis-statistical-measures.csv', skiprows=2, encoding='latin1')

Calculate statistical measures

statistics = data.describe().T statistics['mode'] = data.mode().iloc[0] statistics['coefficientofvariation'] = (statistics['std'] / statistics['mean']) * 100

Save the results to a CSV file

statistics.tocsv('statisticalmeasures.csv')

print(statistics) ```

Comprehensive Python Code for Calculating Statistical Measures

Here is the Python script to calculate a comprehensive set of statistical measures:

```python import pandas as pd

Load the dataset

data = pd.read_csv('biscobis-statistical-measures.csv')

Calculate comprehensive statistics

stats = { "Mean": data.mean(), "Median": data.median(), "Q1": data.quantile(0.25), "Q2": data.quantile(0.50), "Q3": data.quantile(0.75), "Mode": data.mode().iloc[0], # Simplified mode; first mode only "Minimum": data.min(), "Maximum": data.max(), "Range": data.max() - data.min(), "Variance": data.var(), "Standard Deviation": data.std(), "Coefficient of Variation": data.std() / data.mean() } stats_df = pd.DataFrame(stats)

Format the results for easy Excel import

formattedstats = statsdf.applymap(lambda x: f"{x:.2f}") formattedstats.tocsv('formattedstatisticaldata.csv', index=True) print(formatted_stats) ```

Comprehensive Python Code for Detailed Analysis

This comprehensive code provides detailed statistics and creates visualizations for deeper insights.

```python import pandas as pd import numpy as np from scipy import stats import matplotlib.pyplot as plt import seaborn as sns

def calculate_statistics(data): return pd.Series({ 'Mean': np.mean(data), 'Median': np.median(data), 'Mode': stats.mode(data)[0][0], 'Standard Deviation': np.std(data), 'Variance': np.var(data), 'Range': np.ptp(data), 'Minimum': np.min(data), 'Maximum': np.max(data), 'Q1': np.percentile(data, 25), 'Q3': np.percentile(data, 75), 'Skewness': stats.skew(data), 'Kurtosis': stats.kurtosis(data), 'Coefficient of Variation': (np.std(data) / np.mean(data)) * 100 })

Load the dataset

df = pd.read_csv('biscobis-statistical-measures.csv', skiprows=2, encoding='latin1')

Calculate statistics for each column

statistics = df.apply(calculate_statistics)

Transpose the results for better readability

statistics_transposed = statistics.transpose()

Display and save the results

print(statisticstransposed) statisticstransposed.tocsv('biscobisdetailed_statistics.csv')

Create visualizations

plt.figure(figsize=(12, 6)) sns.boxplot(data=df) plt.title('Distribution of Ratings by Category') plt.xticks(rotation=45) plt.tightlayout() plt.savefig('boxplotbiscobis.png') plt.close()

plt.figure(figsize=(10, 8)) sns.heatmap(df.corr(), annot=True, cmap='coolwarm') plt.title('Correlation Heatmap of Categories') plt.tightlayout() plt.savefig('heatmapcorrelation_biscobis.png') plt.close()

def createhistogram(data, column, bins=10): plt.figure(figsize=(8, 6)) sns.histplot(data[column], bins=bins, kde=True) plt.title(f'Distribution of {column}') plt.xlabel('Value') plt.ylabel('Frequency') plt.savefig(f'histogram{column.lower().replace(" ", "_")}.png') plt.close()

for column in df.columns: create_histogram(df, column)

print("Analysis complete. Results saved in CSV and PNG files.") ```

```python import pandas as pd import numpy as np from scipy import stats import matplotlib.pyplot as plt import seaborn as sns

def calculate_statistics(data): # [Previous statistics calculation remains the same]

Load the dataset

df = pd.read_csv('biscobis-statistical-measures.csv', skiprows=2, encoding='latin1')

Calculate statistics for each column

statistics = df.apply(calculate_statistics)

Transpose the results for better readability

statistics_transposed = statistics.transpose()

Display and save the results

print(statisticstransposed) statisticstransposed.tocsv('biscobisdetailed_statistics.csv')

Create visualizations

plt.figure(figsize=(12, 6)) sns.boxplot(data=df) plt.title('Distribution of Ratings by Category') plt.xticks(rotation=45) plt.tightlayout() plt.savefig('boxplotbiscobis.png') plt.show() # Added to display the boxplot plt.close()

plt.figure(figsize=(10, 8)) sns.heatmap(df.corr(), annot=True, cmap='coolwarm') plt.title('Correlation Heatmap of Categories') plt.tightlayout() plt.savefig('heatmapcorrelation_biscobis.png') plt.show() # Added to display the heatmap plt.close()

def createhistogram(data, column, bins=10): plt.figure(figsize=(8, 6)) sns.histplot(data[column], bins=bins, kde=True) plt.title(f'Distribution of {column}') plt.xlabel('Value') plt.ylabel('Frequency') plt.savefig(f'histogram{column.lower().replace(" ", "_")}.png') plt.show() # Added to display each histogram plt.close()

for column in df.columns: create_histogram(df, column)

print("Analysis complete. Results saved in CSV and PNG files.") ```

Running the Analysis

To run either version of the code, follow these steps: 1. Ensure you have Python installed on your system. 2. Install the required libraries: - For the concise version: pip install pandas - For the comprehensive version: pip install pandas numpy scipy matplotlib seaborn 3. Place the biscobis-statistical-measures.csv file in the same directory as the Python script. 4. Run the script using Python.

Note on Displaying Graphs

When running the comprehensive analysis script, you will now see the graphs displayed on your screen in addition to having them saved as PNG files. If you're running the script in a non-interactive environment (like a server or automated pipeline), you may want to comment out the plt.show() lines to prevent the script from hanging.

Copyright 2024 Quantum Software Development. Code released under the MIT license.

Owner

  • Name: Quantum Software Development
  • Login: Quantum-Software-Development
  • Kind: organization

Quantum 4 All !

Citation (CITATION.cff)

cff-version: 1.2.0
title:  Quantum-Software-Development 
message: If you really want to cite this repository, here's how you should cite it.
type: software
authors:
  - given-names: Quantum-Software-Development - statistical-measures 
repository-code: https://github.com/Quantum-Software-Development/statistical-measures
license: MIT License 

GitHub Events

Total
  • Issues event: 6
  • Watch event: 1
  • Delete event: 99
  • Issue comment event: 3
  • Push event: 117
  • Pull request event: 184
  • Fork event: 2
  • Create event: 92
Last Year
  • Issues event: 6
  • Watch event: 1
  • Delete event: 99
  • Issue comment event: 3
  • Push event: 117
  • Pull request event: 184
  • Fork event: 2
  • Create event: 92

Committers

Last synced: about 1 year ago

All Time
  • Total Commits: 104
  • Total Committers: 3
  • Avg Commits per committer: 34.667
  • Development Distribution Score (DDS): 0.423
Past Year
  • Commits: 104
  • Committers: 3
  • Avg Commits per committer: 34.667
  • Development Distribution Score (DDS): 0.423
Top Committers
Name Email Commits
Fabiana 🚀 Campanari f****i@g****m 60
Fabiana 🚀 Campanari 1****i 38
dependabot[bot] 4****] 6

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 4
  • Total pull requests: 216
  • Average time to close issues: 20 minutes
  • Average time to close pull requests: 5 days
  • Total issue authors: 1
  • Total pull request authors: 2
  • Average comments per issue: 0.0
  • Average comments per pull request: 0.04
  • Merged pull requests: 190
  • Bot issues: 0
  • Bot pull requests: 93
Past Year
  • Issues: 4
  • Pull requests: 216
  • Average time to close issues: 20 minutes
  • Average time to close pull requests: 5 days
  • Issue authors: 1
  • Pull request authors: 2
  • Average comments per issue: 0.0
  • Average comments per pull request: 0.04
  • Merged pull requests: 190
  • Bot issues: 0
  • Bot pull requests: 93
Top Authors
Issue Authors
  • FabianaCampanari (6)
Pull Request Authors
  • FabianaCampanari (196)
  • dependabot[bot] (104)
Top Labels
Issue Labels
Pull Request Labels
dependencies (104) python (104)