stable-baselines3
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.
Science Score: 75.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 2 DOI reference(s) in README -
○Academic publication links
-
✓Committers with academic emails
8 of 161 committers (5.0%) from academic institutions -
✓Institutional organization owner
Organization dlr-rm has institutional domain (rm.dlr.de) -
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (16.1%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.
Basic Info
- Host: GitHub
- Owner: DLR-RM
- License: mit
- Language: Python
- Default Branch: master
- Homepage: https://stable-baselines3.readthedocs.io
- Size: 4.71 MB
Statistics
- Stars: 11,426
- Watchers: 66
- Forks: 1,924
- Open Issues: 79
- Releases: 29
Topics
Metadata Files
README.md
Stable Baselines3

Stable Baselines3 (SB3) is a set of reliable implementations of reinforcement learning algorithms in PyTorch. It is the next major version of Stable Baselines.
You can read a detailed presentation of Stable Baselines3 in the v1.0 blog post or our JMLR paper.
These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones. We also hope that the simplicity of these tools will allow beginners to experiment with a more advanced toolset, without being buried in implementation details.
Note: Despite its simplicity of use, Stable Baselines3 (SB3) assumes you have some knowledge about Reinforcement Learning (RL). You should not utilize this library without some practice. To that extent, we provide good resources in the documentation to get started with RL.
Main Features
The performance of each algorithm was tested (see Results section in their respective page), you can take a look at the issues #48 and #49 for more details.
We also provide detailed logs and reports on the OpenRL Benchmark platform.
| Features | Stable-Baselines3 |
| --------------------------- | ----------------------|
| State of the art RL methods | :heavycheckmark: |
| Documentation | :heavycheckmark: |
| Custom environments | :heavycheckmark: |
| Custom policies | :heavycheckmark: |
| Common interface | :heavycheckmark: |
| Dict observation space support | :heavycheckmark: |
| Ipython / Notebook friendly | :heavycheckmark: |
| Tensorboard support | :heavycheckmark: |
| PEP8 code style | :heavycheckmark: |
| Custom callback | :heavycheckmark: |
| High code coverage | :heavycheckmark: |
| Type hints | :heavycheckmark: |
Planned features
Since most of the features from the original roadmap have been implemented, there are no major changes planned for SB3, it is now stable. If you want to contribute, you can search in the issues for the ones where help is welcomed and the other proposed enhancements.
While SB3 development is now focused on bug fixes and maintenance (doc update, user experience, ...), there is more active development going on in the associated repositories: - newer algorithms are regularly added to the SB3 Contrib repository - faster variants are developed in the SBX (SB3 + Jax) repository - the training framework for SB3, the RL Zoo, has an active roadmap
Migration guide: from Stable-Baselines (SB2) to Stable-Baselines3 (SB3)
A migration guide from SB2 to SB3 can be found in the documentation.
Documentation
Documentation is available online: https://stable-baselines3.readthedocs.io/
Integrations
Stable-Baselines3 has some integration with other libraries/services like Weights & Biases for experiment tracking or Hugging Face for storing/sharing trained models. You can find out more in the dedicated section of the documentation.
RL Baselines3 Zoo: A Training Framework for Stable Baselines3 Reinforcement Learning Agents
RL Baselines3 Zoo is a training framework for Reinforcement Learning (RL).
It provides scripts for training, evaluating agents, tuning hyperparameters, plotting results and recording videos.
In addition, it includes a collection of tuned hyperparameters for common environments and RL algorithms, and agents trained with those settings.
Goals of this repository:
- Provide a simple interface to train and enjoy RL agents
- Benchmark the different Reinforcement Learning algorithms
- Provide tuned hyperparameters for each environment and RL algorithm
- Have fun with the trained agents!
Github repo: https://github.com/DLR-RM/rl-baselines3-zoo
Documentation: https://rl-baselines3-zoo.readthedocs.io/en/master/
SB3-Contrib: Experimental RL Features
We implement experimental features in a separate contrib repository: SB3-Contrib
This allows SB3 to maintain a stable and compact core, while still providing the latest features, like Recurrent PPO (PPO LSTM), CrossQ, Truncated Quantile Critics (TQC), Quantile Regression DQN (QR-DQN) or PPO with invalid action masking (Maskable PPO).
Documentation is available online: https://sb3-contrib.readthedocs.io/
Stable-Baselines Jax (SBX)
Stable Baselines Jax (SBX) is a proof of concept version of Stable-Baselines3 in Jax, with recent algorithms like DroQ or CrossQ.
It provides a minimal number of features compared to SB3 but can be much faster (up to 20x times!): https://twitter.com/araffin2/status/1590714558628253698
Installation
Note: Stable-Baselines3 supports PyTorch >= 2.3
Prerequisites
Stable Baselines3 requires Python 3.9+.
Windows
To install stable-baselines on Windows, please look at the documentation.
Install using pip
Install the Stable Baselines3 package:
sh
pip install 'stable-baselines3[extra]'
This includes optional dependencies like Tensorboard, OpenCV or ale-py to train on atari games. If you do not need those, you can use:
sh
pip install stable-baselines3
Please read the documentation for more details and alternatives (from source, using docker).
Example
Most of the code in the library tries to follow a sklearn-like syntax for the Reinforcement Learning algorithms.
Here is a quick example of how to train and run PPO on a cartpole environment: ```python import gymnasium as gym
from stable_baselines3 import PPO
env = gym.make("CartPole-v1", render_mode="human")
model = PPO("MlpPolicy", env, verbose=1) model.learn(totaltimesteps=10000)
vecenv = model.getenv() obs = vecenv.reset() for i in range(1000): action, _states = model.predict(obs, deterministic=True) obs, reward, done, info = vecenv.step(action) vec_env.render() # VecEnv resets automatically # if done: # obs = env.reset()
env.close() ```
Or just train a model with a one liner if the environment is registered in Gymnasium and if the policy is registered:
```python from stable_baselines3 import PPO
model = PPO("MlpPolicy", "CartPole-v1").learn(10_000) ```
Please read the documentation for more examples.
Try it online with Colab Notebooks !
All the following examples can be executed online using Google Colab notebooks:
- Full Tutorial
- All Notebooks
- Getting Started
- Training, Saving, Loading
- Multiprocessing
- Monitor Training and Plotting
- Atari Games
- RL Baselines Zoo
- PyBullet
Implemented Algorithms
| Name | Recurrent | Box | Discrete | MultiDiscrete | MultiBinary | Multi Processing |
| ------------------- | ------------------ | ------------------ | ------------------ | ------------------- | ------------------ | --------------------------------- |
| ARS1 | :x: | :heavycheckmark: | :heavycheckmark: | :x: | :x: | :heavycheckmark: |
| A2C | :x: | :heavycheckmark: | :heavycheckmark: | :heavycheckmark: | :heavycheckmark: | :heavycheckmark: |
| CrossQ1 | :x: | :heavycheckmark: | :x: | :x: | :x: | :heavycheckmark: |
| DDPG | :x: | :heavycheckmark: | :x: | :x: | :x: | :heavycheckmark: |
| DQN | :x: | :x: | :heavycheckmark: | :x: | :x: | :heavycheckmark: |
| HER | :x: | :heavycheckmark: | :heavycheckmark: | :x: | :x: | :heavycheckmark: |
| PPO | :x: | :heavycheckmark: | :heavycheckmark: | :heavycheckmark: | :heavycheckmark: | :heavycheckmark: |
| QR-DQN1 | :x: | :x: | :heavycheckmark: | :x: | :x: | :heavycheckmark: |
| RecurrentPPO1 | :heavycheckmark: | :heavycheckmark: | :heavycheckmark: | :heavycheckmark: | :heavycheckmark: | :heavycheckmark: |
| SAC | :x: | :heavycheckmark: | :x: | :x: | :x: | :heavycheckmark: |
| TD3 | :x: | :heavycheckmark: | :x: | :x: | :x: | :heavycheckmark: |
| TQC1 | :x: | :heavycheckmark: | :x: | :x: | :x: | :heavycheckmark: |
| TRPO1 | :x: | :heavycheckmark: | :heavycheckmark: | :heavycheckmark: | :heavycheckmark: | :heavycheckmark: |
| Maskable PPO1 | :x: | :x: | :heavycheckmark: | :heavycheckmark: | :heavycheckmark: | :heavycheckmark: |
1: Implemented in SB3 Contrib GitHub repository.
Actions gymnasium.spaces:
* Box: A N-dimensional box that contains every point in the action space.
* Discrete: A list of possible actions, where each timestep only one of the actions can be used.
* MultiDiscrete: A list of possible actions, where each timestep only one action of each discrete set can be used.
* MultiBinary: A list of possible actions, where each timestep any of the actions can be used in any combination.
Testing the installation
Install dependencies
sh
pip install -e .[docs,tests,extra]
Run tests
All unit tests in stable baselines3 can be run using pytest runner:
sh
make pytest
To run a single test file:
sh
python3 -m pytest -v tests/test_env_checker.py
To run a single test:
sh
python3 -m pytest -v -k 'test_check_env_dict_action'
You can also do a static type check using mypy:
sh
pip install mypy
make type
Codestyle check with ruff:
sh
pip install ruff
make lint
Projects Using Stable-Baselines3
We try to maintain a list of projects using stable-baselines3 in the documentation, please tell us if you want your project to appear on this page ;)
Citing the Project
To cite this repository in publications:
bibtex
@article{stable-baselines3,
author = {Antonin Raffin and Ashley Hill and Adam Gleave and Anssi Kanervisto and Maximilian Ernestus and Noah Dormann},
title = {Stable-Baselines3: Reliable Reinforcement Learning Implementations},
journal = {Journal of Machine Learning Research},
year = {2021},
volume = {22},
number = {268},
pages = {1-8},
url = {http://jmlr.org/papers/v22/20-1364.html}
}
Note: If you need to refer to a specific version of SB3, you can also use the Zenodo DOI.
Maintainers
Stable-Baselines3 is currently maintained by Ashley Hill (aka @hill-a), Antonin Raffin (aka @araffin), Maximilian Ernestus (aka @ernestum), Adam Gleave (@AdamGleave), Anssi Kanervisto (@Miffyli) and Quentin Gallouédec (@qgallouedec).
Important Note: We do not provide technical support, or consulting and do not answer personal questions via email. Please post your question on the RL Discord, Reddit, or Stack Overflow in that case.
How To Contribute
To any interested in making the baselines better, there is still some documentation that needs to be done. If you want to contribute, please read CONTRIBUTING.md guide first.
Acknowledgments
The initial work to develop Stable Baselines3 was partially funded by the project Reduced Complexity Models from the Helmholtz-Gemeinschaft Deutscher Forschungszentren, and by the EU's Horizon 2020 Research and Innovation Programme under grant number 951992 (VeriDream).
The original version, Stable Baselines, was created in the robotics lab U2IS (INRIA Flowers team) at ENSTA ParisTech.
Logo credits: L.M. Tenkes
Owner
- Name: DLR-RM
- Login: DLR-RM
- Kind: organization
- Location: 48.08329, 11.27507
- Website: https://rm.dlr.de
- Repositories: 40
- Profile: https://github.com/DLR-RM
German Aerospace Center (DLR) - Institute of Robotics and Mechatronics (RM) - open source projects
Citation (CITATION.bib)
@article{stable-baselines3,
author = {Antonin Raffin and Ashley Hill and Adam Gleave and Anssi Kanervisto and Maximilian Ernestus and Noah Dormann},
title = {Stable-Baselines3: Reliable Reinforcement Learning Implementations},
journal = {Journal of Machine Learning Research},
year = {2021},
volume = {22},
number = {268},
pages = {1-8},
url = {http://jmlr.org/papers/v22/20-1364.html}
}
Committers
Last synced: 7 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Antonin RAFFIN | a****n@e****g | 521 |
| Quentin Gallouédec | 4****c | 51 |
| Noah Dormann | N****n@d****e | 47 |
| Adam Gleave | a****m@g****e | 17 |
| Anssi | k****1@h****m | 10 |
| Alex Pasquali | a****8@g****m | 8 |
| Juan Rocamonde | j****e@g****m | 6 |
| PatrickHelm | 9****m | 5 |
| Thomas Simonini | s****o@g****m | 4 |
| Stelios Tymvios | 5****d | 4 |
| M. Ernestus | m****n@e****e | 4 |
| Corentin | 1****r | 4 |
| Tobias Rohrer | t****r@o****m | 3 |
| Sidney Tio | 3****o | 3 |
| Rohan Tangri | 4****o | 3 |
| Mark Towers | m****s@g****m | 3 |
| Chris Schindlbeck | c****k@g****m | 2 |
| Bernhard Raml | B****l@g****t | 2 |
| Costa Huang | c****g@o****m | 2 |
| Dominic Kerr | d****1@g****m | 2 |
| Francesco Capuano | 7****o | 2 |
| Grégoire Passault | g****t@g****m | 2 |
| Jan-Hendrik Ewers | me@j****k | 2 |
| Marc Duclusaud | 5****s | 2 |
| Marsel Khisamutdinov | c****s@g****m | 2 |
| Megan Klaiber | m****r@o****m | 2 |
| Oleksii Kachaiev | k****v@g****m | 2 |
| Tom Dörr | t****6@g****m | 2 |
| Parth Kothari | 1****1 | 2 |
| Paul Scheikl | p****l@k****u | 2 |
| and 131 more... | ||
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 566
- Total pull requests: 229
- Average time to close issues: about 2 months
- Average time to close pull requests: 2 months
- Total issue authors: 428
- Total pull request authors: 75
- Average comments per issue: 3.06
- Average comments per pull request: 2.0
- Merged pull requests: 151
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 106
- Pull requests: 83
- Average time to close issues: 12 days
- Average time to close pull requests: 4 days
- Issue authors: 93
- Pull request authors: 26
- Average comments per issue: 1.69
- Average comments per pull request: 0.36
- Merged pull requests: 54
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- npit (8)
- JaimeParker (8)
- Kallinteris-Andreas (7)
- fede72bari (6)
- araffin (6)
- PBerit (5)
- nrigol (5)
- XiaobenLi00 (5)
- wilhem (5)
- suargi (4)
- d505 (4)
- aheidariiiiii1993 (4)
- MetallicaSPA (4)
- JDRanpariya (4)
- Familyforever7 (4)
Pull Request Authors
- araffin (94)
- qgallouedec (11)
- markscsmith (6)
- corentinlger (6)
- cschindlbeck (6)
- PatrickHelm (5)
- Mahsarnzh (5)
- pseudo-rnd-thoughts (5)
- JoshuaBluem (4)
- fracapuano (4)
- MarcDcls (4)
- Copilot (4)
- BertrandDecoster (3)
- iwishiwasaneagle (3)
- Zhanwei-Liu (2)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 5
-
Total downloads:
- pypi 678,109 last-month
- Total docker downloads: 3,126
-
Total dependent packages: 88
(may contain duplicates) -
Total dependent repositories: 647
(may contain duplicates) - Total versions: 168
- Total maintainers: 6
pypi.org: stable-baselines3
Pytorch version of Stable Baselines, implementations of reinforcement learning algorithms.
- Homepage: https://github.com/DLR-RM/stable-baselines3
- Documentation: https://stable-baselines3.readthedocs.io/
- License: MIT
-
Latest release: 2.7.0
published 5 months ago
Rankings
Maintainers (5)
proxy.golang.org: github.com/DLR-RM/stable-baselines3
- Documentation: https://pkg.go.dev/github.com/DLR-RM/stable-baselines3#section-documentation
- License: mit
-
Latest release: v2.7.0+incompatible
published 5 months ago
Rankings
proxy.golang.org: github.com/dlr-rm/stable-baselines3
- Documentation: https://pkg.go.dev/github.com/dlr-rm/stable-baselines3#section-documentation
- License: mit
-
Latest release: v2.7.0+incompatible
published 5 months ago
Rankings
pypi.org: rigged-sb3
Experimental version of SB3
- Homepage: https://github.com/DLR-RM/stable-baselines3
- Documentation: https://rigged-sb3.readthedocs.io/
- License: MIT
-
Latest release: 0.0.1
published over 3 years ago
Rankings
Maintainers (1)
conda-forge.org: stable-baselines3
- Homepage: https://github.com/DLR-RM/stable-baselines3
- License: MIT
-
Latest release: 1.4.0
published almost 4 years ago
Rankings
Dependencies
- For *
- Plotting *
- cloudpickle *
- gym ==0.21
- matplotlib *
- numpy *
- pandas *
- torch >=1.11