streamad
Online anomaly detection for data streams/ Real-time anomaly detection for time series data.
Science Score: 67.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 2 DOI reference(s) in README -
✓Academic publication links
Links to: arxiv.org, springer.com, ieee.org, acm.org -
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (15.5%) to scientific vocabulary
Keywords
Repository
Online anomaly detection for data streams/ Real-time anomaly detection for time series data.
Basic Info
- Host: GitHub
- Owner: Fengrui-Liu
- License: apache-2.0
- Language: Python
- Default Branch: main
- Homepage: https://streamad.readthedocs.io/en/latest/
- Size: 31 MB
Statistics
- Stars: 123
- Watchers: 6
- Forks: 24
- Open Issues: 3
- Releases: 3
Topics
Metadata Files
README.md
StreamAD
Anomaly detection for data streams/time series. Detectors process the univariate or multivariate data one by one to simulte a real-time scene.
Installation
The stable version can be installed from PyPI:
bash
pip install streamad
The development version can be installed from GitHub:
bash
pip install git+https://github.com/Fengrui-Liu/StreamAD
Quick Start
Start once detection within 5 lines of code. You can find more example with visualization results here.
```python from streamad.util import StreamGenerator, UnivariateDS from streamad.model import SpotDetector
ds = UnivariateDS() stream = StreamGenerator(ds.data) model = SpotDetector()
for x in stream.iteritem(): score = model.fitscore(x) ```
Models
For univariate time series
If you want to detect multivarite time series with these models, you need to apply them on each feature separately.
| Model Example | API Usage | Paper | | ----------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | KNNCAD | streamad.model.KNNDetector | Conformalized density- and distance-based anomaly detection in time-series data | | SPOT | streamad.model.SpotDetector | Anomaly detection in streams with extreme value theory | | Spectral Residual | streamad.model.SRDetector | Time-series anomaly detection service at microsoft | | Z score | streamad.model.ZScoreDetector | Standard score | | One-class SVM | streamad.model.OCSVMDetector | One-class SVM | | MAD | streamad.model.MadDetector | Median absolute deviation | | SARIMAX | streamad.model.SArimaDetector | Seasonal Arima Detector |
For multivariate time series
These models are compatible with univariate time series.
| Models Example | API Usage | Paper | | ------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | xStream | streamad.model.xStramDetector | Xstream: outlier detection in feature-evolving data streams | | RShash | streamad.model.RShashDetector | Subspace Outlier Detection in Linear Time with Randomized Hashing | | HSTree | streamad.model.HSTreeDetector | Fast Anomaly Detection for Streaming Data | | LODA | streamad.model.LodaDetector | Lightweight on-line detector of anomalies | | RRCF | streamad.model.RrcfDetector | Robust random cut forest based anomaly detection on streams |
Owner
- Name: Fengrui Liu
- Login: Fengrui-Liu
- Kind: user
- Location: Beijing, China
- Company: Institute of Computing Technology, Chinese Academy of Sciences
- Website: www.liufr.com
- Repositories: 3
- Profile: https://github.com/Fengrui-Liu
Love What You Do ❤️ Do What You Love
Citation (CITATION.cff)
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: Liu
given-names: Fengrui
orcid:
title: "StreamAD"
version: 0.3.0
doi:
date-released: 2022-05-15
GitHub Events
Total
- Watch event: 13
- Issue comment event: 1
- Fork event: 1
Last Year
- Watch event: 13
- Issue comment event: 1
- Fork event: 1
Committers
Last synced: almost 3 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| Fengrui-Liu | l****z@i****n | 213 |
| lcx | 1****2@q****m | 7 |
| Xujiahui21 | 9****1@u****m | 3 |
| lcx | 3****5@u****m | 2 |
| Brandon Fergerson | b****n@a****g | 1 |
| Manuel Kaufmann | h****s@g****m | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 11 months ago
All Time
- Total issues: 2
- Total pull requests: 14
- Average time to close issues: about 23 hours
- Average time to close pull requests: 7 days
- Total issue authors: 2
- Total pull request authors: 7
- Average comments per issue: 4.0
- Average comments per pull request: 0.86
- Merged pull requests: 8
- Bot issues: 0
- Bot pull requests: 2
Past Year
- Issues: 1
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 1
- Pull request authors: 0
- Average comments per issue: 2.0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- stefanDeveloper (1)
- BFergerson (1)
Pull Request Authors
- Trailer5 (5)
- Xujiahui21 (4)
- fossabot (1)
- dependabot[bot] (1)
- humitos (1)
- BFergerson (1)
- lgtm-com[bot] (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
- Total downloads: unknown
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 1
conda-forge.org: streamad
- Homepage: https://github.com/Fengrui-Liu/StreamAD
- License: Apache-2.0
-
Latest release: 0.1.1
published almost 4 years ago
Rankings
Dependencies
- kaleido *
- jupytext *
- myst_nb *
- plotly *
- recommonmark *
- rrcf *
- setuptools ==58.2.0
- sphinx-book-theme *
- sphinx-togglebutton *
- sphinx_autodoc_typehints *
- sphinx_copybutton *
- sphinx_design *
- sphinxcontrib.apidoc *
- sphinxcontrib.bibtex *
- tdigest *
- actions/checkout v3 composite
- actions/setup-python v3 composite
- pypa/gh-action-pypi-publish 27b31702a0e7fc50959f5ad993c78deac1bdfc29 composite
- actions/checkout master composite
- actions/checkout v3 composite
- actions/setup-python master composite
- actions/setup-python v3 composite
- codecov/codecov-action v2 composite
- pypa/gh-action-pypi-publish v1.5.0 composite
- accumulation-tree 0.6.2
- colorama 0.4.6
- coverage 7.2.5
- exceptiongroup 1.1.1
- fast-histogram 0.11
- iniconfig 2.0.0
- joblib 1.2.0
- mmh3 3.1.0
- numpy 1.24.3
- packaging 23.1
- pandas 1.5.3
- patsy 0.5.3
- plotly 5.14.1
- pluggy 1.0.0
- pytest 7.3.1
- pytest-cov 4.0.0
- python-dateutil 2.8.2
- pytz 2023.3
- pyudorandom 1.0.0
- rrcf 0.4.4
- scikit-learn 1.2.2
- scipy 1.6.1
- scipy 1.9.3
- six 1.16.0
- statsmodels 0.13.5
- tdigest 0.5.2.2
- tenacity 8.2.2
- threadpoolctl 3.1.0
- tomli 2.0.1
- fast-histogram ^0.11
- mmh3 ^3.0.0
- numpy ^1.22
- pandas ^1.3.0
- plotly ^5.14.1
- pytest ^7.3.1
- pytest-cov ^4.0.0
- python ^3.8
- rrcf ^0.4.4
- scikit-learn ^1.0.0
- scipy ^1.3.1
- statsmodels 0.13.5
- tdigest ^0.5.2.2