sen2nbar
Nadir BRDF Adjusted Reflectance (NBAR) for Sentinel-2 in Python
Science Score: 54.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
✓DOI references
Found 20 DOI reference(s) in README -
✓Academic publication links
Links to: arxiv.org -
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (8.8%) to scientific vocabulary
Keywords
Repository
Nadir BRDF Adjusted Reflectance (NBAR) for Sentinel-2 in Python
Basic Info
- Host: GitHub
- Owner: ESDS-Leipzig
- License: mit
- Language: Python
- Default Branch: main
- Homepage: https://sen2nbar.readthedocs.io/
- Size: 3.23 MB
Statistics
- Stars: 58
- Watchers: 3
- Forks: 5
- Open Issues: 1
- Releases: 7
Topics
Metadata Files
README.md
Nadir BRDF Adjusted Reflectance (NBAR) for Sentinel-2 in Python
GitHub: https://github.com/ESDS-Leipzig/sen2nbar
Documentation: https://sen2nbar.readthedocs.io/
PyPI: https://pypi.org/project/sen2nbar/
Conda-forge: https://anaconda.org/conda-forge/sen2nbar
Tutorials: https://sen2nbar.readthedocs.io/en/latest/tutorials.html
Paper: https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024
[!IMPORTANT]
Oursen2nbarpaper is out! Check it here: Montero, D., Mahecha, M.D., Aybar, C., Mosig, C., & Wieneke, S. (2024). Facilitating Advanced Sentinel-2 Analysis Through a Simplified Computation of Nadir BRDF Adjusted Reflectance.
Overview
First, a super small glossary:
- BRDF: Bidirectional Reflectance Distribution Function.
- DN: Digital Number.
- NBAR: Nadir BRDF Adjusted Reflectance.
- SR: Surface Reflectance.
- STAC: SpatioTemporal Assets Catalogs.
Second, the amazing bibliography by David P. Roy et al., used to create this package:
- Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data.
- A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance.
- Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance.
- Adjustment of sentinel-2 multi-spectral instrument (MSI) red-edge band reflectance to nadir BRDF adjusted reflectance (NBAR) and quantification of red-edge band BRDF effects.
Third, the super useful bibliography by Lucht et al.,:
Given this, and in a few words, sen2nbar converts the Sentinel-2 SR (i.e., L2A) to Sentinel-2 NBAR via the c-factor method.
SAFE
You can use sen2nbar to convert complete images via SAFE:
```python from sen2nbar.nbar import nbar_SAFE
Converted images are saved inside the SAFE path
nbarSAFE("S2AMSIL2A20230223T075931N0509R035T35HLC_20230223T120656.SAFE") ```
Note
Note that
sen2nbarautomatically shifts the DN of images with a processing baseline >= 04.00. This includes data cubes obtained viastackstacorcubo.
stackstac
Or, if you are using STAC and retrieving images via stackstac:
```python import pystacclient import stackstac import planetarycomputer as pc from sen2nbar.nbar import nbar_stackstac
Important infor for later
endpoint = "https://planetarycomputer.microsoft.com/api/stac/v1" collection = "sentinel-2-l2a" bounds = (-148.565368, 60.800723, -147.443389, 61.183638)
Open the STAC
catalog = pystacclient.Client.open(endpoint, modifier=pc.signinplace)
Define your area
areaofinterest = { "type": "Polygon", "coordinates": [ [ [bounds[0], bounds[1]], [bounds[2], bounds[1]], [bounds[2], bounds[3]], [bounds[0], bounds[3]], [bounds[0], bounds[1]], ] ], }
Search the items
items = catalog.search( collections=[collection], intersects=areaofinterest, datetime="2019-06-01/2019-08-01", query={"eo:cloudcover": {"lt": 10}}, ).getall_items()
Retrieve all items as a xr.DataArray
stack = stackstac.stack( items, assets=["B05","B06","B07"], # Red Edge here, but you can use more! bounds_latlon=bounds, resolution=20 )
Convert it to NBAR!
da = nbar_stackstac( stack, stac=endpoint, collection=collection ) ```
Warning
These examples are done using
Planetary Computer. If you are using data cubes retrieved via STAC (e.g., by usingstackstacorcubo), we recommend you to use this provider. The providerElement84is not supported at the moment.
cubo
And going deeper, if you are using cubo:
```python import cubo import xarray as xr from sen2nbar.nbar import nbar_cubo
Get your cube
da = cubo.create( lat=47.84815, lon=13.37949, collection="sentinel-2-l2a", bands=["B02","B03","B04"], # RGB here, but you can add more bands! startdate="2020-01-01", enddate="2021-01-01", edgesize=64, resolution=10, query={"eo:cloudcover": {"lt": 3}} )
Convert it to NBAR (This a xr.DataArray)
da = nbar_cubo(da) ```
Bands
sen2nbar converts the following bands (if available in the input data):
- RGB Bands: 02, 03, 04.
- Red Edge Bands: 05, 06, 07.
- Broad NIR Band: 08.
- SWIR Bands: 11, 12.
Installation
Install the latest version from PyPI:
pip install sen2nbar
Upgrade sen2nbar by running:
pip install -U sen2nbar
Install the latest version from conda-forge:
conda install -c conda-forge sen2nbar
Install the latest dev version from GitHub by running:
pip install git+https://github.com/davemlz/sen2nbar
Citation
If you use this work, please consider citing the following paper:
bibtex
@article{montero2024sen2nbar,
title = {Facilitating advanced Sentinel-2 analysis through a simplified computation of Nadir BRDF Adjusted Reflectance},
volume = {XLVIII-4/W12-2024},
ISSN = {2194-9034},
url = {http://dx.doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024},
DOI = {10.5194/isprs-archives-xlviii-4-w12-2024-105-2024},
journal = {The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences},
publisher = {Copernicus GmbH},
author = {Montero, David and Mahecha, Miguel D. and Aybar, César and Mosig, Clemens and Wieneke, Sebastian},
year = {2024},
month = jun,
pages = {105–112}
}
License
The project is licensed under the MIT license.
Owner
- Name: ESDS-Leipzig
- Login: ESDS-Leipzig
- Kind: organization
- Repositories: 1
- Profile: https://github.com/ESDS-Leipzig
Citation (CITATION.bib)
@article{montero2024sen2nbar,
title = {Facilitating advanced Sentinel-2 analysis through a simplified computation of Nadir BRDF Adjusted Reflectance},
volume = {XLVIII-4/W12-2024},
ISSN = {2194-9034},
url = {http://dx.doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024},
DOI = {10.5194/isprs-archives-xlviii-4-w12-2024-105-2024},
journal = {The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences},
publisher = {Copernicus GmbH},
author = {Montero, David and Mahecha, Miguel D. and Aybar, César and Mosig, Clemens and Wieneke, Sebastian},
year = {2024},
month = jun,
pages = {105–112}
}
GitHub Events
Total
- Issues event: 1
- Watch event: 11
- Issue comment event: 1
- Fork event: 1
Last Year
- Issues event: 1
- Watch event: 11
- Issue comment event: 1
- Fork event: 1
Committers
Last synced: over 1 year ago
Top Committers
| Name | Commits | |
|---|---|---|
| davemlz | d****t@g****m | 73 |
| aldotapia | a****a@u****l | 2 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 8
- Total pull requests: 1
- Average time to close issues: 17 days
- Average time to close pull requests: about 18 hours
- Total issue authors: 4
- Total pull request authors: 1
- Average comments per issue: 1.0
- Average comments per pull request: 3.0
- Merged pull requests: 1
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 2
- Pull requests: 0
- Average time to close issues: 2 days
- Average time to close pull requests: N/A
- Issue authors: 2
- Pull request authors: 0
- Average comments per issue: 0.5
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- davemlz (4)
- behzad-vahedi (2)
- zhongguolishenglin (1)
- cmosig (1)
Pull Request Authors
- aldotapia (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 48 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 7
- Total maintainers: 1
pypi.org: sen2nbar
Nadir BRDF Adjusted Reflectance (NBAR) for Sentinel-2 in Python
- Homepage: https://github.com/ESDS-Leipzig/sen2nbar
- Documentation: https://sen2nbar.readthedocs.io/
- License: MIT
-
Latest release: 2024.6.0
published over 1 year ago
Rankings
Maintainers (1)
Dependencies
- actions/checkout v2 composite
- actions/setup-python v2 composite
- google-auth <3.0dev,>=2.14.1
- ipython *
- nbsphinx *
- protobuf <3.18.0,>=3.12.0
- pydata-sphinx-theme *
- recommonmark *
- sphinx >=1.4,
- sphinx-copybutton *
- sphinx-material *
- sphinxcontrib-autoprogram *
- dask *
- numpy *
- pandas *
- rasterio *
- requests *
- xarray *
- xmltodict *
- cubo >=2023.7.2
- pystac *
- rasterio >=1.3.6
- requests *
- rioxarray >=0.13.4
- scipy >=1.10.1
- tqdm *
- xmltodict *

