tts

๐Ÿธ๐Ÿ’ฌ - a deep learning toolkit for Text-to-Speech, battle-tested in research and production

https://github.com/coqui-ai/tts

Science Score: 64.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • โœ“
    CITATION.cff file
    Found CITATION.cff file
  • โœ“
    codemeta.json file
    Found codemeta.json file
  • โœ“
    .zenodo.json file
    Found .zenodo.json file
  • โ—‹
    DOI references
  • โœ“
    Academic publication links
    Links to: arxiv.org, zenodo.org
  • โœ“
    Committers with academic emails
    5 of 163 committers (3.1%) from academic institutions
  • โ—‹
    Institutional organization owner
  • โ—‹
    JOSS paper metadata
  • โ—‹
    Scientific vocabulary similarity
    Low similarity (11.7%) to scientific vocabulary

Keywords

deep-learning glow-tts hifigan melgan multi-speaker-tts python pytorch speaker-encoder speaker-encodings speech speech-synthesis tacotron text-to-speech tts tts-model vocoder voice-cloning voice-conversion voice-synthesis

Keywords from Contributors

transformer cryptocurrency jax cryptography tokenization diffusion stable-diffusion named-entity-recognition distributed language-model
Last synced: 6 months ago · JSON representation ·

Repository

๐Ÿธ๐Ÿ’ฌ - a deep learning toolkit for Text-to-Speech, battle-tested in research and production

Basic Info
  • Host: GitHub
  • Owner: coqui-ai
  • License: mpl-2.0
  • Language: Python
  • Default Branch: dev
  • Homepage: http://coqui.ai
  • Size: 162 MB
Statistics
  • Stars: 41,082
  • Watchers: 313
  • Forks: 5,316
  • Open Issues: 14
  • Releases: 98
Topics
deep-learning glow-tts hifigan melgan multi-speaker-tts python pytorch speaker-encoder speaker-encodings speech speech-synthesis tacotron text-to-speech tts tts-model vocoder voice-cloning voice-conversion voice-synthesis
Created almost 6 years ago · Last pushed over 1 year ago
Metadata Files
Readme Contributing License Code of conduct Citation

README.md

๐ŸธCoqui.ai News

  • ๐Ÿ“ฃ โ“TTSv2 is here with 16 languages and better performance across the board.
  • ๐Ÿ“ฃ โ“TTS fine-tuning code is out. Check the example recipes.
  • ๐Ÿ“ฃ โ“TTS can now stream with <200ms latency.
  • ๐Ÿ“ฃ โ“TTS, our production TTS model that can speak 13 languages, is released Blog Post, Demo, Docs
  • ๐Ÿ“ฃ ๐ŸถBark is now available for inference with unconstrained voice cloning. Docs
  • ๐Ÿ“ฃ You can use ~1100 Fairseq models with ๐ŸธTTS.
  • ๐Ÿ“ฃ ๐ŸธTTS now supports ๐ŸขTortoise with faster inference. Docs
## **๐ŸธTTS is a library for advanced Text-to-Speech generation.** ๐Ÿš€ Pretrained models in +1100 languages. ๐Ÿ› ๏ธ Tools for training new models and fine-tuning existing models in any language. ๐Ÿ“š Utilities for dataset analysis and curation. ______________________________________________________________________ [![Discord](https://img.shields.io/discord/1037326658807533628?color=%239B59B6&label=chat%20on%20discord)](https://discord.gg/5eXr5seRrv) [![License]()](https://opensource.org/licenses/MPL-2.0) [![PyPI version](https://badge.fury.io/py/TTS.svg)](https://badge.fury.io/py/TTS) [![Covenant](https://camo.githubusercontent.com/7d620efaa3eac1c5b060ece5d6aacfcc8b81a74a04d05cd0398689c01c4463bb/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f436f6e7472696275746f72253230436f76656e616e742d76322e3025323061646f707465642d6666363962342e737667)](https://github.com/coqui-ai/TTS/blob/master/CODE_OF_CONDUCT.md) [![Downloads](https://pepy.tech/badge/tts)](https://pepy.tech/project/tts) [![DOI](https://zenodo.org/badge/265612440.svg)](https://zenodo.org/badge/latestdoi/265612440) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/aux_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/data_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/docker.yaml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/inference_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/style_check.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/text_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/tts_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/vocoder_tests.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests0.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests1.yml/badge.svg) ![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests2.yml/badge.svg) [![Docs]()](https://tts.readthedocs.io/en/latest/)

๐Ÿ’ฌ Where to ask questions

Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly so that more people can benefit from it.

| Type | Platforms | | ------------------------------- | --------------------------------------- | | ๐Ÿšจ Bug Reports | GitHub Issue Tracker | | ๐ŸŽ Feature Requests & Ideas | GitHub Issue Tracker | | ๐Ÿ‘ฉโ€๐Ÿ’ป Usage Questions | GitHub Discussions | | ๐Ÿ—ฏ General Discussion | GitHub Discussions or Discord |

๐Ÿ”— Links and Resources

| Type | Links | | ------------------------------- | --------------------------------------- | | ๐Ÿ’ผ Documentation | ReadTheDocs | ๐Ÿ’พ Installation | TTS/README.md| | ๐Ÿ‘ฉโ€๐Ÿ’ป Contributing | CONTRIBUTING.md| | ๐Ÿ“Œ Road Map | Main Development Plans | ๐Ÿš€ Released Models | TTS Releases and Experimental Models| | ๐Ÿ“ฐ Papers | TTS Papers|

๐Ÿฅ‡ TTS Performance

Underlined "TTS" and "Judy" are internal ๐ŸธTTS models that are not released open-source. They are here to show the potential. Models prefixed with a dot (.Jofish .Abe and .Janice) are real human voices.

Features

  • High-performance Deep Learning models for Text2Speech tasks.
    • Text2Spec models (Tacotron, Tacotron2, Glow-TTS, SpeedySpeech).
    • Speaker Encoder to compute speaker embeddings efficiently.
    • Vocoder models (MelGAN, Multiband-MelGAN, GAN-TTS, ParallelWaveGAN, WaveGrad, WaveRNN)
  • Fast and efficient model training.
  • Detailed training logs on the terminal and Tensorboard.
  • Support for Multi-speaker TTS.
  • Efficient, flexible, lightweight but feature complete Trainer API.
  • Released and ready-to-use models.
  • Tools to curate Text2Speech datasets underdataset_analysis.
  • Utilities to use and test your models.
  • Modular (but not too much) code base enabling easy implementation of new ideas.

Model Implementations

Spectrogram models

End-to-End Models

Attention Methods

  • Guided Attention: paper
  • Forward Backward Decoding: paper
  • Graves Attention: paper
  • Double Decoder Consistency: blog
  • Dynamic Convolutional Attention: paper
  • Alignment Network: paper

Speaker Encoder

Vocoders

Voice Conversion

You can also help us implement more models.

Installation

๐ŸธTTS is tested on Ubuntu 18.04 with python >= 3.9, < 3.12..

If you are only interested in synthesizing speech with the released ๐ŸธTTS models, installing from PyPI is the easiest option.

bash pip install TTS

If you plan to code or train models, clone ๐ŸธTTS and install it locally.

bash git clone https://github.com/coqui-ai/TTS pip install -e .[all,dev,notebooks] # Select the relevant extras

If you are on Ubuntu (Debian), you can also run following commands for installation.

bash $ make system-deps # intended to be used on Ubuntu (Debian). Let us know if you have a different OS. $ make install

If you are on Windows, ๐Ÿ‘‘@GuyPaddock wrote installation instructions here.

Docker Image

You can also try TTS without install with the docker image. Simply run the following command and you will be able to run TTS without installing it.

bash docker run --rm -it -p 5002:5002 --entrypoint /bin/bash ghcr.io/coqui-ai/tts-cpu python3 TTS/server/server.py --list_models #To get the list of available models python3 TTS/server/server.py --model_name tts_models/en/vctk/vits # To start a server

You can then enjoy the TTS server here More details about the docker images (like GPU support) can be found here

Synthesizing speech by ๐ŸธTTS

๐Ÿ Python API

Running a multi-speaker and multi-lingual model

```python import torch from TTS.api import TTS

Get device

device = "cuda" if torch.cuda.is_available() else "cpu"

List available ๐ŸธTTS models

print(TTS().list_models())

Init TTS

tts = TTS("ttsmodels/multilingual/multi-dataset/xttsv2").to(device)

Run TTS

โ— Since this model is multi-lingual voice cloning model, we must set the target speaker_wav and language

Text to speech list of amplitude values as output

wav = tts.tts(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en")

Text to speech to a file

tts.ttstofile(text="Hello world!", speakerwav="my/cloning/audio.wav", language="en", filepath="output.wav") ```

Running a single speaker model

```python

Init TTS with the target model name

tts = TTS(modelname="ttsmodels/de/thorsten/tacotron2-DDC", progress_bar=False).to(device)

Run TTS

tts.ttstofile(text="Ich bin eine Testnachricht.", filepath=OUTPUTPATH)

Example voice cloning with YourTTS in English, French and Portuguese

tts = TTS(modelname="ttsmodels/multilingual/multi-dataset/yourtts", progressbar=False).to(device) tts.ttstofile("This is voice cloning.", speakerwav="my/cloning/audio.wav", language="en", filepath="output.wav") tts.ttstofile("C'est le clonage de la voix.", speakerwav="my/cloning/audio.wav", language="fr-fr", filepath="output.wav") tts.ttstofile("Isso รฉ clonagem de voz.", speakerwav="my/cloning/audio.wav", language="pt-br", filepath="output.wav") ```

Example voice conversion

Converting the voice in source_wav to the voice of target_wav

python tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False).to("cuda") tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav")

Example voice cloning together with the voice conversion model.

This way, you can clone voices by using any model in ๐ŸธTTS.

```python

tts = TTS("ttsmodels/de/thorsten/tacotron2-DDC") tts.ttswithvctofile( "Wie sage ich auf Italienisch, dass ich dich liebe?", speakerwav="target/speaker.wav", file_path="output.wav" ) ```

Example text to speech using Fairseq models in ~1100 languages ๐Ÿคฏ.

For Fairseq models, use the following name format: tts_models/<lang-iso_code>/fairseq/vits. You can find the language ISO codes here and learn about the Fairseq models here.

```python

TTS with on the fly voice conversion

api = TTS("ttsmodels/deu/fairseq/vits") api.ttswithvctofile( "Wie sage ich auf Italienisch, dass ich dich liebe?", speakerwav="target/speaker.wav", file_path="output.wav" ) ```

Command-line tts

Synthesize speech on command line.

You can either use your trained model or choose a model from the provided list.

If you don't specify any models, then it uses LJSpeech based English model.

Single Speaker Models

  • List provided models:

$ tts --list_models

  • Get model info (for both ttsmodels and vocodermodels):

    • Query by type/name: The modelinfobyname uses the name as it from the --listmodels. $ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>" For example: $ tts --model_info_by_name tts_models/tr/common-voice/glow-tts $ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2
    • Query by type/idx: The modelqueryidx uses the corresponding idx from --list_models.

    $ tts --model_info_by_idx "<model_type>/<model_query_idx>"

    For example:

    $ tts --model_info_by_idx tts_models/3 - Query info for model info by full name: $ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"

  • Run TTS with default models:

$ tts --text "Text for TTS" --out_path output/path/speech.wav

  • Run TTS and pipe out the generated TTS wav file data:

$ tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay

  • Run a TTS model with its default vocoder model:

$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav

For example:

$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav

  • Run with specific TTS and vocoder models from the list:

$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --vocoder_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav

For example:

$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav

  • Run your own TTS model (Using Griffin-Lim Vocoder):

$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav

  • Run your own TTS and Vocoder models:

$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav --vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json

Multi-speaker Models

  • List the available speakers and choose a among them:

$ tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs

  • Run the multi-speaker TTS model with the target speaker ID:

$ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id>

  • Run your own multi-speaker TTS model:

$ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id>

Voice Conversion Models

$ tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav>

Directory Structure

|- notebooks/ (Jupyter Notebooks for model evaluation, parameter selection and data analysis.) |- utils/ (common utilities.) |- TTS |- bin/ (folder for all the executables.) |- train*.py (train your target model.) |- ... |- tts/ (text to speech models) |- layers/ (model layer definitions) |- models/ (model definitions) |- utils/ (model specific utilities.) |- speaker_encoder/ (Speaker Encoder models.) |- (same) |- vocoder/ (Vocoder models.) |- (same)

Owner

  • Name: coqui
  • Login: coqui-ai
  • Kind: organization
  • Email: info@coqui.ai

Coqui, a startup providing open speech tech for everyone ๐Ÿธ

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you want to cite ๐Ÿธ๐Ÿ’ฌ, feel free to use this (but only if you loved it ๐Ÿ˜Š)"
title: "Coqui TTS"
abstract: "A deep learning toolkit for Text-to-Speech, battle-tested in research and production"
date-released: 2021-01-01
authors:
  - family-names: "Eren"
    given-names: "Gรถlge"
  - name: "The Coqui TTS Team"
version: 1.4
doi: 10.5281/zenodo.6334862
license: "MPL-2.0"
url: "https://www.coqui.ai"
repository-code: "https://github.com/coqui-ai/TTS"
keywords:
  - machine learning
  - deep learning
  - artificial intelligence
  - text to speech
  - TTS

Committers

Last synced: 9 months ago

All Time
  • Total Commits: 4,240
  • Total Committers: 163
  • Avg Commits per committer: 26.012
  • Development Distribution Score (DDS): 0.472
Past Year
  • Commits: 0
  • Committers: 0
  • Avg Commits per committer: 0.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Eren Gรถlge e****e@c****i 2,237
Eren Golge e****e@m****m 865
Edresson e****1@g****m 297
WeberJulian j****r@h****r 170
Eren e****e@g****m 68
root r****t@s****c 47
SanjaESC a****v@g****m 47
Reuben Morais r****s@g****m 36
Thomas Werkmeister t****s@t****m 35
Thorsten Mueller M****M@g****t 29
kirianguiller k****r@g****m 25
gerazov g****v@f****k 22
Jรถrg Thalheim j****g@t****o 13
Aarni Koskela a****x@i****i 13
Ayush Chaurasia a****a@g****m 12
nmstoker g****t@n****m 11
Katsuya Iida k****a@g****m 11
Alexander Korolev S****C 11
p0p4k r****a@g****m 10
thllwg t****7@u****e 10
Michael Hansen m****e@r****g 8
rishikksh20 r****0@g****m 8
mueller91 n****m@g****t 7
Enno Hermann e****n@i****h 7
Enno Hermann E****d 7
Adonis Pujols a****s 7
mueller n****r@a****e 7
Aya Jafari a****i@c****i 6
omahs 7****s 6
mittimithai m****i@g****m 6
and 133 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 697
  • Total pull requests: 297
  • Average time to close issues: about 2 months
  • Average time to close pull requests: 24 days
  • Total issue authors: 579
  • Total pull request authors: 144
  • Average comments per issue: 4.37
  • Average comments per pull request: 2.2
  • Merged pull requests: 147
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 93
  • Pull requests: 34
  • Average time to close issues: about 2 months
  • Average time to close pull requests: about 1 month
  • Issue authors: 88
  • Pull request authors: 20
  • Average comments per issue: 2.62
  • Average comments per pull request: 2.32
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • vagreenleaf (12)
  • phamkhactu (7)
  • mllopartbsc (5)
  • Lenos500 (5)
  • domasofan (5)
  • Yaodada12 (4)
  • Parvezkhan0 (4)
  • erogol (4)
  • yukiarimo (4)
  • chigkim (4)
  • qyum (4)
  • thoraxe (3)
  • bensonbs (3)
  • fakerybakery (3)
  • Ca-ressemble-a-du-fake (3)
Pull Request Authors
  • erogol (46)
  • WeberJulian (21)
  • Edresson (17)
  • eginhard (14)
  • akx (12)
  • JaysonAlbert (6)
  • Sovanndara1987 (6)
  • manmay-nakhashi (4)
  • Ben-Epstein (4)
  • aaron-lii (4)
  • rish106-hub (4)
  • suxinsen (4)
  • p0p4k (3)
  • eltociear (3)
  • Aya-AlJafari (3)
Top Labels
Issue Labels
bug (466) wontfix (293) feature request (197) help wanted (19) good first issue (3) TODOs (1)
Pull Request Labels
wontfix (121) :rocket: new version (2) model implementation (1) feature request (1)

Packages

  • Total packages: 6
  • Total downloads:
    • pypi 263,330 last-month
  • Total docker downloads: 371
  • Total dependent packages: 14
    (may contain duplicates)
  • Total dependent repositories: 23
    (may contain duplicates)
  • Total versions: 257
  • Total maintainers: 3
pypi.org: tts

Deep learning for Text to Speech by Coqui.

  • Versions: 86
  • Dependent Packages: 14
  • Dependent Repositories: 22
  • Downloads: 263,274 Last month
  • Docker Downloads: 371
Rankings
Stargazers count: 0.1%
Forks count: 0.3%
Dependent packages count: 0.9%
Downloads: 1.0%
Average: 1.3%
Docker downloads count: 2.2%
Dependent repos count: 3.1%
Maintainers (2)
Last synced: 6 months ago
proxy.golang.org: github.com/coqui-ai/TTS
  • Versions: 82
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 6.5%
Average: 6.7%
Dependent repos count: 7.0%
Last synced: 6 months ago
proxy.golang.org: github.com/coqui-ai/tts
  • Versions: 82
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 6.5%
Average: 6.7%
Dependent repos count: 7.0%
Last synced: 7 months ago
pypi.org: tts2

Deep learning for Text to Speech by Coqui.

  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 45 Last month
Rankings
Stargazers count: 0.3%
Forks count: 1.2%
Dependent packages count: 6.6%
Average: 12.3%
Downloads: 22.7%
Dependent repos count: 30.6%
Maintainers (1)
Last synced: 6 months ago
pypi.org: dtts

Deep learning for Text to Speech by Coqui.

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 11 Last month
Rankings
Stargazers count: 0.1%
Forks count: 0.4%
Dependent packages count: 7.5%
Average: 19.4%
Dependent repos count: 69.6%
Maintainers (1)
Last synced: 7 months ago
conda-forge.org: tts
  • Versions: 4
  • Dependent Packages: 0
  • Dependent Repositories: 1
Rankings
Stargazers count: 3.0%
Forks count: 4.5%
Average: 20.8%
Dependent repos count: 24.1%
Dependent packages count: 51.5%
Last synced: 6 months ago

Dependencies

.github/workflows/aux_tests.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/data_tests.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/docker.yaml actions
  • actions/checkout v2 composite
  • docker/build-push-action v2 composite
  • docker/login-action v1 composite
  • docker/setup-buildx-action v1 composite
  • docker/setup-qemu-action v1 composite
.github/workflows/inference_tests.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/pypi-release.yml actions
  • actions/checkout v2 composite
  • actions/download-artifact v2 composite
  • actions/setup-python v2 composite
  • actions/upload-artifact v2 composite
.github/workflows/style_check.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/text_tests.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/tts_tests.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/tts_tests2.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/vocoder_tests.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/zoo_tests0.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/zoo_tests1.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/zoo_tests2.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
Dockerfile docker
  • ${BASE} latest build
recipes/bel-alex73/docker-prepare/Dockerfile docker
  • ubuntu 22.04 build
TTS/encoder/requirements.txt pypi
  • numpy >=1.17.0
  • umap-learn *
TTS/tts/utils/monotonic_align/setup.py pypi
docs/requirements.txt pypi
  • furo *
  • linkify-it-py *
  • myst-parser ==2.0.0
  • sphinx ==7.2.5
  • sphinx_copybutton *
  • sphinx_inline_tabs *
pyproject.toml pypi
requirements.dev.txt pypi
  • black * development
  • coverage * development
  • isort * development
  • nose2 * development
  • pylint ==2.10.2 development
requirements.ja.txt pypi
  • mecab-python3 ==1.0.6
  • unidic-lite ==1.0.8
requirements.notebooks.txt pypi
  • bokeh ==1.4.0
requirements.txt pypi
  • aiohttp *
  • anyascii *
  • bangla ==0.0.2
  • bnnumerizer *
  • bnunicodenormalizer ==0.1.1
  • coqpit >=0.0.16
  • cython ==0.29.30
  • einops *
  • encodec *
  • flask *
  • fsspec ==2023.6.0
  • g2pkk >=0.1.1
  • gruut ==2.2.3
  • inflect ==5.6.0
  • jamo *
  • jieba *
  • k_diffusion *
  • librosa ==0.10.0.
  • matplotlib *
  • nltk *
  • numba ==0.57.0
  • numba ==0.55.1
  • numpy ==1.24.3
  • numpy ==1.22.0
  • packaging *
  • pandas *
  • pypinyin *
  • pysbd *
  • pyyaml *
  • scipy >=1.11.2
  • soundfile *
  • torch >=1.7
  • torchaudio *
  • tqdm *
  • trainer *
  • transformers *
  • umap-learn ==0.5.1
  • unidecode *
setup.py pypi
.github/workflows/xtts_tests.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
TTS/demos/xtts_ft_demo/requirements.txt pypi
  • faster_whisper ==0.9.0
  • gradio ==4.7.1