lapack-base-dgttrf

Compute an `LU` factorization of a real tridiagonal matrix `A` using elimination with partial pivoting and row interchanges

https://github.com/stdlib-js/lapack-base-dgttrf

Science Score: 44.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (13.9%) to scientific vocabulary

Keywords

algebra array cholesky dgttrf double factorization float64 float64array javascript lapack linear math mathematics ndarray node node-js nodejs stdlib subroutines
Last synced: 4 months ago · JSON representation ·

Repository

Compute an `LU` factorization of a real tridiagonal matrix `A` using elimination with partial pivoting and row interchanges

Basic Info
Statistics
  • Stars: 0
  • Watchers: 0
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
algebra array cholesky dgttrf double factorization float64 float64array javascript lapack linear math mathematics ndarray node node-js nodejs stdlib subroutines
Created 7 months ago · Last pushed 5 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation Security

README.md

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

dgttrf

NPM version Build Status Coverage Status <!-- dependencies -->

Compute an LU factorization of a real tridiagonal matrix A using elimination with partial pivoting and row interchanges.

The `dgttrf` routine computes an LU factorization of a real N-by-N tridiagonal matrix `A` using elimination with partial pivoting and row interchanges. The factorization has the form: ```math A = L U ``` where `L` is a product of permutation and unit lower bidiagonal matrices and `U` is upper triangular with non-zeros in only the main diagonal and first two superdiagonals. For a 5-by-5 tridiagonal matrix `A`, elements are stored in three arrays: ```math A = \left[ \begin{array}{rrrrr} d_1 & du_1 & 0 & 0 & 0 \\ dl_1 & d_2 & du_2 & 0 & 0 \\ 0 & dl_2 & d_3 & du_3 & 0 \\ 0 & 0 & dl_3 & d_4 & du_4 \\ 0 & 0 & 0 & dl_4 & d_5 \end{array} \right] ``` where: - `dl` contains the subdiagonal elements. - `d` contains the diagonal elements. - `du` contains the superdiagonal elements. After factorization, the elements of `L` and `U` are used to update the input arrays, where: - `dl` contains the multipliers that define unit lower bidiagonal matrix `L`. - `d` contains the diagonal elements of `U`. - `du` and `du2` contain the elements of `U` on the first and second superdiagonals. The resulting `L` and `U` matrices have the following structure: ```math L = \left[ \begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ l_1 & 1 & 0 & 0 & 0 \\ 0 & l_2 & 1 & 0 & 0 \\ 0 & 0 & l_3 & 1 & 0 \\ 0 & 0 & 0 & l_4 & 1 \end{array} \right] ``` ```math U = \left[ \begin{array}{rrrrr} u_{1,1} & u_{1,2} & u_{1,3} & 0 & 0 \\ 0 & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\ 0 & 0 & u_{3,3} & u_{3,4} & u_{3,5} \\ 0 & 0 & 0 & u_{4,4} & u_{4,5} \\ 0 & 0 & 0 & 0 & u_{5,5} \end{array} \right] ``` where the `l(i)` values are stored in `DL`, the diagonal elements `u(i,i)` are stored in `D`, and the superdiagonal elements `u(i,i+1)` and `u(i,i+2)` are stored in `DU` and `DU2`, respectively.
## Installation ```bash npm install @stdlib/lapack-base-dgttrf ``` Alternatively, - To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]). - If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions). - For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]). The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships. To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
## Usage ```javascript var dgttrf = require( '@stdlib/lapack-base-dgttrf' ); ``` #### dgttrf( N, DL, D, DU, DU2, IPIV ) Computes an `LU` factorization of a real tridiagonal matrix `A` using elimination with partial pivoting and row interchanges. ```javascript var Float64Array = require( '@stdlib/array-float64' ); var Int32Array = require( '@stdlib/array-int32' ); var dgttrf = require( '@stdlib/lapack-base-dgttrf' ); var DL = new Float64Array( [ 6.0, 6.0 ] ); var D = new Float64Array( [ 20.0, 30.0, 10.0 ] ); var DU = new Float64Array( [ 8.0, 8.0 ] ); var DU2 = new Float64Array( [ 0.0 ] ); var IPIV = new Int32Array( [ 0, 0, 0 ] ); /* A = [ [ 20.0, 8.0, 0.0 ], [ 6.0, 30.0, 8.0 ], [ 0.0, 6.0, 10.0 ] ] */ dgttrf( 3, DL, D, DU, DU2, IPIV ); // DL => [ 0.3, ~0.22 ] // D => [ 20.0, 27.6, ~8.26 ] // DU => [ 8.0, 8.0 ] // DU2 => [ 0.0 ] // IPIV => [ 0, 1, 2 ] ``` The function has the following parameters: - **N**: number of rows/columns in `A`. - **DL**: the first sub diagonal of `A` as a [`Float64Array`][mdn-float64array]. Should have `N-1` indexed elements. `DL` is overwritten by the multipliers that define the matrix `L` from the `LU` factorization of `A`. - **D**: the diagonal of `A` as a [`Float64Array`][mdn-float64array]. Should have `N` indexed elements. `D` is overwritten by the diagonal elements of the upper triangular matrix `U` from the `LU` factorization of `A`. - **DU**: the first super-diagonal of `A` as a [`Float64Array`][mdn-float64array]. Should have `N-1` indexed elements. `DU` is overwritten by the elements of the first super-diagonal of `U`. - **DU2**: the second super-diagonal of `U` as a [`Float64Array`][mdn-float64array]. Should have `N-2` indexed elements. `DU2` is overwritten by the elements of the second super-diagonal of `U` as a [`Float64Array`][mdn-float64array]. - **IPIV**: vector of pivot indices as a [`Int32Array`][mdn-int32array]. Should have `N` indexed elements. Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. ```javascript var Float64Array = require( '@stdlib/array-float64' ); var Int32Array = require( '@stdlib/array-int32' ); var dgttrf = require( '@stdlib/lapack-base-dgttrf' ); // Initial arrays... var DL0 = new Float64Array( [ 0.0, 6.0, 6.0 ] ); var D0 = new Float64Array( [ 0.0, 20.0, 30.0, 10.0 ] ); var DU0 = new Float64Array( [ 0.0, 8.0, 8.0 ] ); var DU20 = new Float64Array( [ 0.0, 0.0 ] ); var IPIV0 = new Int32Array( [ 0, 0, 0, 0 ] ); /* A = [ [ 20.0, 8.0, 0.0 ], [ 6.0, 30.0, 8.0 ], [ 0.0, 6.0, 10.0 ] ] */ // Create offset views... var DL = new Float64Array( DL0.buffer, DL0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var D = new Float64Array( D0.buffer, D0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var DU = new Float64Array( DU0.buffer, DU0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var DU2 = new Float64Array( DU20.buffer, DU20.BYTES_PER_ELEMENT*1 ); // start at 2nd element var IPIV = new Int32Array( IPIV0.buffer, IPIV0.BYTES_PER_ELEMENT*1 ); // start at 2nd element dgttrf( 3, DL, D, DU, DU2, IPIV ); // DL0 => [ 0.0, 0.3, ~0.22 ] // D0 => [ 0.0, 20.0, 27.6, ~8.26 ] // DU0 => [ 0.0, 8.0, 8.0 ] // DU20 => [ 0.0, 0.0 ] // IPIV0 => [ 0, 0, 1, 2 ] ``` #### dgttrf.ndarray( N, DL, sdl, odl, D, sd, od, DU, sdu, odu, DU2, sdu2, odu2, IPIV, si, oi ) Computes an `LU` factorization of a real tridiagonal matrix `A` using elimination with partial pivoting and row interchanges and alternative indexing semantics. ```javascript var Float64Array = require( '@stdlib/array-float64' ); var Int32Array = require( '@stdlib/array-int32' ); var dgttrf = require( '@stdlib/lapack-base-dgttrf' ); var DL = new Float64Array( [ 6.0, 6.0 ] ); var D = new Float64Array( [ 20.0, 30.0, 10.0 ] ); var DU = new Float64Array( [ 8.0, 8.0 ] ); var DU2 = new Float64Array( [ 0.0 ] ); var IPIV = new Int32Array( [ 0, 0, 0 ] ); /* A = [ [ 20.0, 8.0, 0.0 ], [ 6.0, 30.0, 8.0 ], [ 0.0, 6.0, 10.0 ] ] */ dgttrf.ndarray( 3, DL, 1, 0, D, 1, 0, DU, 1, 0, DU2, 1, 0, IPIV, 1, 0 ); // DL => [ 0.3, ~0.22 ] // D => [ 20.0, 27.6, ~8.26 ] // DU => [ 8.0, 8.0 ] // DU2 => [ 0.0 ] // IPIV => [ 0, 1, 2 ] ``` The function has the following additional parameters: - **sdl**: stride length for `DL`. - **odl**: starting index for `DL`. - **sd**: stride length for `D`. - **od**: starting index for `D`. - **sdu**: stride length for `DU`. - **odu**: starting index for `DU`. - **sdu2**: stride length for `DU2`. - **odu2**: starting index for `DU2`. - **si**: stride length for `IPIV`. - **oi**: starting index for `IPIV`. While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, ```javascript var Float64Array = require( '@stdlib/array-float64' ); var Int32Array = require( '@stdlib/array-int32' ); var dgttrf = require( '@stdlib/lapack-base-dgttrf' ); var DL = new Float64Array( [ 0.0, 6.0, 6.0 ] ); var D = new Float64Array( [ 0.0, 20.0, 30.0, 10.0 ] ); var DU = new Float64Array( [ 0.0, 8.0, 8.0 ] ); var DU2 = new Float64Array( [ 0.0, 0.0 ] ); var IPIV = new Int32Array( [ 0, 0, 0, 0 ] ); /* A = [ [ 20.0, 8.0, 0.0 ], [ 6.0, 30.0, 8.0 ], [ 0.0, 6.0, 10.0 ] ] */ dgttrf.ndarray( 3, DL, 1, 1, D, 1, 1, DU, 1, 1, DU2, 1, 1, IPIV, 1, 1 ); // DL => [ 0.0, 0.3, ~0.22 ] // D => [ 0.0, 20.0, 27.6, ~8.26 ] // DU => [ 0.0, 8.0, 8.0 ] // DU2 => [ 0.0, 0.0 ] // IPIV => [ 0, 0, 1, 2 ] ```
## Notes - Both functions mutate the input arrays `DL`, `D`, `DU`, `DU2`, and `IPIV`. - Both functions return a status code indicating success or failure. The status code indicates the following conditions: - `0`: factorization was successful. - `>0`: `U(k, k)` is exactly zero the factorization has been completed, but the factor `U` is exactly singular, and division by zero will occur if it is used to solve a system of equations where `k` equals the status code value. - `dgttrf()` corresponds to the [LAPACK][LAPACK] routine [`dgttrf`][lapack-dgttrf].
## Examples ```javascript var Int32Array = require( '@stdlib/array-int32' ); var Float64Array = require( '@stdlib/array-float64' ); var dgttrf = require( '@stdlib/lapack-base-dgttrf' ); var N = 9; var DL = new Float64Array( [ 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0 ] ); var D = new Float64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] ); var DU = new Float64Array( [ 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0 ] ); var DU2 = new Float64Array( N-2 ); var IPIV = new Int32Array( N ); /* A = [ [ 1.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 3.0, 1.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 0.0, 3.0, 1.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 0.0, 0.0, 3.0, 1.0, 4.0, 0.0, 0.0, 0.0, 0.0 ], [ 0.0, 0.0, 0.0, 3.0, 1.0, 4.0, 0.0, 0.0, 0.0 ], [ 0.0, 0.0, 0.0, 0.0, 3.0, 1.0, 4.0, 0.0, 0.0 ], [ 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 1.0, 4.0, 0.0 ], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 1.0, 4.0 ], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 1.0 ], ] */ // Perform the `A = LU` factorization: var info = dgttrf( N, DL, D, DU, DU2, IPIV ); console.log( DL ); console.log( D ); console.log( DU ); console.log( DU2 ); console.log( IPIV ); console.log( info ); ```

## C APIs
### Usage ```c TODO ``` #### TODO TODO. ```c TODO ``` TODO ```c TODO ```
### Examples ```c TODO ```

* * * ## Notice This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more. For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib]. #### Community [![Chat][chat-image]][chat-url] --- ## License See [LICENSE][stdlib-license]. ## Copyright Copyright © 2016-2025. The Stdlib [Authors][stdlib-authors].

Owner

  • Name: stdlib
  • Login: stdlib-js
  • Kind: organization

Standard library for JavaScript.

Citation (CITATION.cff)

cff-version: 1.2.0
title: stdlib
message: >-
  If you use this software, please cite it using the
  metadata from this file.

type: software

authors:
  - name: The Stdlib Authors
    url: https://github.com/stdlib-js/stdlib/graphs/contributors

repository-code: https://github.com/stdlib-js/stdlib
url: https://stdlib.io

abstract: |
  Standard library for JavaScript and Node.js.

keywords:
  - JavaScript
  - Node.js
  - TypeScript
  - standard library
  - scientific computing
  - numerical computing
  - statistical computing

license: Apache-2.0 AND BSL-1.0

date-released: 2016

GitHub Events

Total
  • Push event: 7
  • Create event: 4
Last Year
  • Push event: 7
  • Create event: 4

Dependencies

.github/workflows/benchmark.yml actions
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
.github/workflows/cancel.yml actions
  • styfle/cancel-workflow-action 85880fa0301c86cca9da44039ee3bb12d3bedbfa composite
.github/workflows/close_pull_requests.yml actions
  • superbrothers/close-pull-request 9c18513d320d7b2c7185fb93396d0c664d5d8448 composite
.github/workflows/examples.yml actions
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
.github/workflows/npm_downloads.yml actions
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
  • actions/upload-artifact 5d5d22a31266ced268874388b861e4b58bb5c2f3 composite
  • distributhor/workflow-webhook 48a40b380ce4593b6a6676528cd005986ae56629 composite
.github/workflows/productionize.yml actions
  • 8398a7/action-slack 28ba43ae48961b90635b50953d216767a6bea486 composite
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
  • stdlib-js/bundle-action main composite
  • stdlib-js/transform-errors-action main composite
.github/workflows/publish.yml actions
  • 8398a7/action-slack 28ba43ae48961b90635b50953d216767a6bea486 composite
  • JS-DevTools/npm-publish 19c28f1ef146469e409470805ea4279d47c3d35c composite
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
  • styfle/cancel-workflow-action 85880fa0301c86cca9da44039ee3bb12d3bedbfa composite
.github/workflows/test.yml actions
  • 8398a7/action-slack 28ba43ae48961b90635b50953d216767a6bea486 composite
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
.github/workflows/test_bundles.yml actions
  • 8398a7/action-slack 28ba43ae48961b90635b50953d216767a6bea486 composite
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
  • denoland/setup-deno 041b854f97b325bd60e53e9dc2de9cb9f9ac0cba composite
.github/workflows/test_coverage.yml actions
  • 8398a7/action-slack 28ba43ae48961b90635b50953d216767a6bea486 composite
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
  • codecov/codecov-action 84508663e988701840491b86de86b666e8a86bed composite
  • distributhor/workflow-webhook 48a40b380ce4593b6a6676528cd005986ae56629 composite
.github/workflows/test_install.yml actions
  • 8398a7/action-slack 28ba43ae48961b90635b50953d216767a6bea486 composite
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
.github/workflows/test_published_package.yml actions
  • 8398a7/action-slack 28ba43ae48961b90635b50953d216767a6bea486 composite
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
package.json npm
  • @stdlib/array-float64 ^0.2.2 development
  • @stdlib/array-int32 ^0.2.2 development
  • @stdlib/assert-is-browser ^0.2.2 development
  • @stdlib/bench-harness ^0.2.2 development
  • @stdlib/math-base-special-pow ^0.3.0 development
  • @stdlib/random-array-uniform ^0.2.1 development
  • istanbul ^0.4.1 development
  • proxyquire ^2.0.0 development
  • tap-min git+https://github.com/Planeshifter/tap-min.git development
  • tape git+https://github.com/kgryte/tape.git#fix/globby development
  • @stdlib/assert-is-error ^0.2.2
  • @stdlib/error-tools-fmtprodmsg ^0.2.2
  • @stdlib/math-base-special-abs ^0.2.2
  • @stdlib/string-format ^0.2.2
  • @stdlib/utils-define-nonenumerable-read-only-property ^0.2.2
  • @stdlib/utils-try-require ^0.2.2