Science Score: 54.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
✓Committers with academic emails
3 of 51 committers (5.9%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.0%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
Root finding functions for Julia
Basic Info
- Host: GitHub
- Owner: JuliaMath
- License: mit
- Language: Julia
- Default Branch: master
- Homepage: http://juliamath.github.io/Roots.jl/
- Size: 5.02 MB
Statistics
- Stars: 383
- Watchers: 29
- Forks: 59
- Open Issues: 18
- Releases: 87
Topics
Metadata Files
README.md
Root finding functions for Julia
This package contains simple routines for finding roots, or zeros, of
scalar functions of a single real variable using floating-point math. The find_zero function
provides the primary interface. The basic call is
find_zero(f, x0, [M], [p]; kws...) where, typically, f is a function, x0 a starting point or
bracketing interval, M is used to adjust the default algorithms used, and p can be used to pass in parameters.
The various algorithms include:
Bisection-like algorithms. For functions where a bracketing interval is known (one where
f(a)andf(b)have alternate signs), a bracketing method, likeBisection, can be specified. The default isBisection, for most floating point number types, employed in a manner exploiting floating point storage conventions. For other number types (e.g.BigFloat), an algorithm of Alefeld, Potra, and Shi is used by default. These default methods are guaranteed to converge. Other bracketing methods are available.Several derivative-free algorithms. These are specified through the methods
Order0,Order1(the secant method),Order2(the Steffensen method),Order5,Order8, andOrder16. The number indicates, roughly, the order of convergence. TheOrder0method is the default, and the most robust, but may take more function calls to converge, as it employs a bracketing method when possible. The higher order methods promise faster convergence, though don't always yield results with fewer function calls thanOrder1orOrder2. The methodsRoots.Order1BandRoots.Order2Bare superlinear and quadratically converging methods independent of the multiplicity of the zero.There are historic algorithms that require a derivative or two to be specified:
Roots.NewtonandRoots.Halley.Roots.Schroderprovides a quadratic method, like Newton's method, which is independent of the multiplicity of the zero. This is generalized byRoots.ThukralXB(withXbeing 2,3,4, or 5).There are several non-exported algorithms, such as,
Roots.Brent(),Roots.LithBoonkkampIJzermanBracket, andRoots.LithBoonkkampIJzerman.
Each method's documentation has additional detail.
Some examples:
```julia julia> using Roots
julia> f(x) = exp(x) - x^4;
julia> α₀, α₁, α₂ = -0.8155534188089607, 1.4296118247255556, 8.6131694564414;
julia> find_zero(f, (8,9), Bisection()) ≈ α₂ # a bisection method has the bracket specified true
julia> findzero(f, (-10, 0)) ≈ α₀ # Bisection is default if x in `findzero(f, x)` is not scalar true
julia> find_zero(f, (-10, 0), Roots.A42()) ≈ α₀ # fewer function evaluations than Bisection true ```
For non-bracketing methods, the initial position is passed in as a
scalar, or, possibly, for secant-like methods an iterable like (x_0, x_1):
```julia julia> findzero(f, 3) ≈ α₁ # findzero(f, x0::Number) will use Order0() true
julia> find_zero(f, 3, Order1()) ≈ α₁ # same answer, different method (secant) true
julia> find_zero(f, (3, 2), Order1()) ≈ α₁ # start secant method with (3, f(3), (2, f(2)) true
julia> find_zero(sin, BigFloat(3.0), Order16()) ≈ π # 2 iterations to 6 using Order1() true ```
The find_zero function can be used with callable objects:
```julia julia> using Polynomials;
julia> x = variable();
julia> find_zero(x^5 - x - 1, 1.0) ≈ 1.1673039782614187 true ```
The function should respect the units of the Unitful package:
```julia julia> using Unitful
julia> s, m = u"s", u"m";
julia> g, v₀, y₀ = 9.8*m/s^2, 10m/s, 16m;
julia> y(t) = -gt^2 + v₀t + y₀ y (generic function with 1 method)
julia> find_zero(y, 1s) ≈ 1.886053370668014s true ```
Newton's method can be used without taking derivatives by hand. The
following examples use the ForwardDiff package:
```julia julia> using ForwardDiff
julia> D(f) = x -> ForwardDiff.derivative(f,float(x)) D (generic function with 1 method) ```
Now we have:
```julia julia> f(x) = x^3 - 2x - 5 f (generic function with 1 method)
julia> x0 = 2 2
julia> find_zero((f, D(f)), x0, Roots.Newton()) ≈ 2.0945514815423265 true ```
Automatic derivatives allow for easy solutions to finding critical points of a function.
```julia julia> using Statistics: mean, median
julia> as = rand(5);
julia> M(x) = sum((x-a)^2 for a in as) M (generic function with 1 method)
julia> find_zero(D(M), .5) ≈ mean(as) true
julia> med(x) = sum(abs(x-a) for a in as) med (generic function with 1 method)
julia> find_zero(D(med), (0, 1)) ≈ median(as) true ```
The CommonSolve interface
The
DifferentialEquations
interface of setting up a problem; initializing the problem; then
solving the problem is also implemented using the types
ZeroProblem and the methods init, solve!, and solve (from CommonSolve).
For example, we can solve a problem with many different methods, as follows:
```julia julia> f(x) = exp(-x) - x^3 f (generic function with 1 method)
julia> x0 = 2.0 2.0
julia> fx = ZeroProblem(f, x0) ZeroProblem{typeof(f), Float64}(f, 2.0)
julia> solve(fx) ≈ 0.7728829591492101 true ```
With no default, and a single initial point specified, the default
Order1 method is used. The solve method allows other root-solving
methods to be passed, along with other options. For example, to use
the Order2 method using a convergence criteria (see below) that
|xₙ - xₙ₋₁| ≤ δ, we could make this call:
julia
julia> solve(fx, Order2(); atol=0.0, rtol=0.0) ≈ 0.7728829591492101
true
Unlike find_zero, which errors on non-convergence, solve returns
NaN on non-convergence.
This next example has a zero at 0.0, but
for most initial values will escape towards ±∞, sometimes causing a
relative tolerance to return a misleading value. Here we can see the
differences:
```julia julia> f(x) = cbrt(x) * exp(-x^2) f (generic function with 1 method)
julia> x0 = 0.1147 0.1147
julia> find_zero(f, x0, Roots.Order5()) ≈ 5.936596662527689 # stopped as |f(xₙ)| ≤ |xₙ|ϵ true
julia> find_zero(f, x0, Roots.Order1(), atol=0.0, rtol=0.0) # error as no check on |f(xn)|
ERROR: Roots.ConvergenceFailed("Algorithm failed to converge")
[...]
julia> fx = ZeroProblem(f, x0);
julia> solve(fx, Roots.Order1(), atol=0.0, rtol=0.0) # NaN, not an error NaN
julia> fx = ZeroProblem((f, D(f)), x0); # higher order methods can identify zero of this function
julia> solve(fx, Roots.LithBoonkkampIJzerman(2,1), atol=0.0, rtol=0.0) 0.0 ```
Functions may be parameterized, as illustrated:
```julia julia> f(x, p=2) = cos(x) - x/p f (generic function with 2 methods)
julia> Z = ZeroProblem(f, pi/4) ZeroProblem{typeof(f), Float64}(f, 0.7853981633974483)
julia> solve(Z, Order1()) ≈ 1.0298665293222586 # use p=2 default true
julia> solve(Z, Order1(), p=3) ≈ 1.170120950002626 # use p=3 true
julia> solve(Z, Order1(), 4) ≈ 1.2523532340025887 # by position, uses p=4 true ```
Multiple zeros
The find_zeros function can be used to search for all zeros in a
specified interval. The basic algorithm essentially splits the interval into many
subintervals. For each, if there is a bracket, a bracketing algorithm
is used to identify a zero, otherwise a derivative free method is used
to search for zeros. This heuristic algorithm can miss zeros for various reasons, so the
results should be confirmed by other means.
```julia julia> f(x) = exp(x) - x^4 f (generic function with 2 methods)
julia> find_zeros(f, -10,10) ≈ [α₀, α₁, α₂] # from above true ```
The interval can also be specified using a structure with extrema
defined, where extrema returns two different values:
```julia julia> using IntervalSets
julia> find_zeros(f, -10..10) ≈ [α₀, α₁, α₂] true ```
(For tougher problems, the
IntervalRootFinding
package gives guaranteed results, rather than the heuristically
identified values returned by find_zeros.)
Convergence
For most algorithms, convergence is decided when
The value
|f(x_n)| <= tolwithtol = max(atol, abs(x_n)*rtol), orthe values
x_n ≈ x_{n-1}with tolerancesxatolandxrtolandf(x_n) ≈ 0with a relaxed tolerance based onatolandrtol.
The find_zero algorithm stops if
it encounters an
NaNor anInf, orthe number of iterations exceed
maxevals
If the algorithm stops and the relaxed convergence criteria is met,
the suspected zero is returned. Otherwise an error is thrown
indicating no convergence. To adjust the tolerances, find_zero
accepts keyword arguments atol, rtol, xatol, and xrtol, as
seen in some examples above.
The Bisection and Roots.A42 methods are guaranteed to converge
even if the tolerances are set to zero, so these are the
defaults. Non-zero values for xatol and xrtol can be specified to
reduce the number of function calls when lower precision is required.
```julia julia> fx = ZeroProblem(sin, (3,4));
julia> solve(fx, Bisection(); xatol=1/16) 3.125 ```
An alternate interface
This functionality is provided by the fzero function, familiar to
MATLAB users. Roots also provides this alternative interface:
fzero(f, x0::Real; order=0)calls a derivative-free method. with the order specifying one ofOrder0,Order1, etc.fzero(f, a::Real, b::Real)calls thefind_zeroalgorithm with theBisectionmethod.fzeros(f, a::Real, b::Real)will callfind_zeros.
Usage examples
```julia julia> f(x) = exp(x) - x^4 f (generic function with 2 methods)
julia> fzero(f, 8, 9) ≈ α₂ # bracketing true
julia> fzero(f, -10, 0) ≈ α₀ true
julia> fzeros(f, -10, 10) ≈ [α₀, α₁, α₂] true
julia> fzero(f, 3) ≈ α₁ # default is Order0() true
julia> fzero(sin, big(3), order=16) ≈ π # uses higher order method true ```
Owner
- Name: Julia Math
- Login: JuliaMath
- Kind: organization
- Website: https://julialang.org
- Repositories: 53
- Profile: https://github.com/JuliaMath
Mathematics made easy in Julia
Citation (CITATION.bib)
@misc{Roots.jl,
title = {{Roots.jl}: Root finding functions for Julia},
author = {John Verzani},
year = {2020},
howpublished = {\url{https://github.com/JuliaMath/Roots.jl}}
}
GitHub Events
Total
- Create event: 23
- Commit comment event: 20
- Release event: 7
- Issues event: 11
- Watch event: 26
- Delete event: 13
- Issue comment event: 49
- Push event: 46
- Pull request review comment event: 2
- Pull request review event: 2
- Pull request event: 44
- Fork event: 5
Last Year
- Create event: 23
- Commit comment event: 20
- Release event: 7
- Issues event: 11
- Watch event: 26
- Delete event: 13
- Issue comment event: 49
- Push event: 46
- Pull request review comment event: 2
- Pull request review event: 2
- Pull request event: 44
- Fork event: 5
Committers
Last synced: 8 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| jverzani | j****i@g****m | 317 |
| github-actions[bot] | 4****] | 24 |
| dependabot[bot] | 4****] | 13 |
| David Widmann | d****n | 8 |
| Kirill Ignatiev | i****l | 7 |
| John Travers | j****s@g****m | 5 |
| Christopher Rackauckas | C****t@C****m | 4 |
| Hendrik Ranocha | r****a | 4 |
| inky | g****t@w****n | 4 |
| Carlo Zanella | z****o@g****m | 3 |
| Tony Kelman | t****y@k****t | 2 |
| Roberto Navarro | r****m@g****m | 2 |
| BarrOff | 5****f | 2 |
| Andrés Riedemann | 3****0 | 2 |
| Alexander Seiler | s****x@g****m | 2 |
| Adam B | a****t@t****z | 1 |
| Alex Arslan | a****n@c****t | 1 |
| Alex Robson | A****n | 1 |
| Andrew Clausen | a****n@g****m | 1 |
| Benoît Legat | b****t@g****m | 1 |
| Elliot Saba | s****t@g****m | 1 |
| Iain Dunning | i****g@g****m | 1 |
| Ingo Blechschmidt | i****h@w****e | 1 |
| Jacob Williams | j****s | 1 |
| Jake Bolewski | j****i@g****m | 1 |
| yammann | a****k@g****m | 1 |
| t-bltg | t****g@g****m | 1 |
| ranjanan | b****n@g****m | 1 |
| kalmarek | k****r@a****l | 1 |
| greimel | 6****l | 1 |
| and 21 more... | ||
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 43
- Total pull requests: 164
- Average time to close issues: 3 months
- Average time to close pull requests: 21 days
- Total issue authors: 34
- Total pull request authors: 16
- Average comments per issue: 5.4
- Average comments per pull request: 0.98
- Merged pull requests: 147
- Bot issues: 0
- Bot pull requests: 42
Past Year
- Issues: 10
- Pull requests: 37
- Average time to close issues: 19 days
- Average time to close pull requests: 15 days
- Issue authors: 9
- Pull request authors: 5
- Average comments per issue: 2.0
- Average comments per pull request: 0.78
- Merged pull requests: 31
- Bot issues: 0
- Bot pull requests: 16
Top Authors
Issue Authors
- longemen3000 (6)
- densmojd (2)
- weymouth (2)
- jrwrigh (1)
- Codsilla (1)
- github-actions[bot] (1)
- hhaensel (1)
- sgaure (1)
- braamvandyk (1)
- hsugawa8651 (1)
- lrnv (1)
- AntoninoDAnna (1)
- JoelTrent (1)
- JuliaTagBot (1)
- fatteneder (1)
Pull Request Authors
- jverzani (112)
- github-actions[bot] (34)
- dependabot[bot] (21)
- devmotion (7)
- inkydragon (7)
- jmert (2)
- ranocha (2)
- longemen3000 (2)
- goggle (2)
- KronosTheLate (1)
- SimonEnsemble (1)
- kunzaatko (1)
- jishnub (1)
- AlexRobson (1)
- hyrodium (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- julia 5,940 total
- Total dependent packages: 161
- Total dependent repositories: 68
- Total versions: 71
juliahub.com: Roots
Root finding functions for Julia
- Homepage: http://juliamath.github.io/Roots.jl/
- Documentation: https://docs.juliahub.com/General/Roots/stable/
- License: MIT
- Status: removed
-
Latest release: 2.1.5
published almost 2 years ago
Rankings
Dependencies
- julia 1.0.0
- actions/checkout v3 composite
- julia-actions/julia-buildpkg v1 composite
- julia-actions/julia-invalidations v1 composite
- julia-actions/setup-julia v1 composite
- JuliaRegistries/TagBot v1 composite
- actions/cache v1 composite
- actions/checkout v2 composite
- julia-actions/julia-buildpkg v1 composite
- julia-actions/julia-runtest v1 composite
- julia-actions/setup-julia v1 composite
- actions/cache v1 composite
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- julia-actions/julia-buildpkg v1 composite
- julia-actions/julia-processcoverage v1 composite
- julia-actions/julia-runtest v1 composite
- julia-actions/setup-julia v1 composite
- actions/checkout v2 composite
- peter-evans/create-pull-request v3 composite
- actions/checkout v4 composite
- crate-ci/typos master composite