FrankWolfe
Julia implementation for various Frank-Wolfe and Conditional Gradient variants
Science Score: 67.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 3 DOI reference(s) in README -
✓Academic publication links
Links to: arxiv.org, zenodo.org -
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (14.2%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
Julia implementation for various Frank-Wolfe and Conditional Gradient variants
Basic Info
Statistics
- Stars: 111
- Watchers: 4
- Forks: 24
- Open Issues: 27
- Releases: 93
Topics
Metadata Files
README.md
FrankWolfe.jl
This package is a toolbox for Frank-Wolfe and conditional gradients algorithms.
Overview
Frank-Wolfe algorithms were designed to solve optimization problems of the form
math
\min_{x ∈ C} f(x),
where $f$ is a differentiable convex function and $C$ is a convex and compact set.
They are especially useful when we know how to optimize a linear function over $C$ in an efficient way.
A paper presenting the package with mathematical explanations and numerous examples can be found here:
Installation
The most recent release is available via the julia package manager, e.g., with
julia
using Pkg
Pkg.add("FrankWolfe")
or the master branch:
julia
Pkg.add(url="https://github.com/ZIB-IOL/FrankWolfe.jl", rev="master")
Getting started
Let's say we want to solve the following minimization problem
math
\min_{p \in Δ(n)} p_1^2 + \dots + p_n^2,
where $Δ(n)= \{p \in R^n_{\geq 0} | p_1 + \dots + p_n =1\}$ is the probability simplex.
Using FrankWolfe.jl, let's write a minimal code solving this problem in dimension $n=3$.
The main function is FrankWolfe.frank_wolfe and it requires:
- a function
fthat computes the values of the objective function $f$; - a function
grad!that computes in-place the gradient of the objective function $f$; - a subtype of
FrankWolfe.LinearMinimizationOraclefor which a method ofFrankWolfe.compute_extreme_pointhas been implemented (see here); - a starting vector
p0.
```julia julia> using FrankWolfe
objective function f(p) = p1^2 + ... + pn^2
julia> f(p) = sum(abs2, p)
in-place gradient computation for f thanks to '.='
julia> grad!(storage, p) = storage .= 2p
pre-defined type implementing the linear minimization oracle interface for the simplex
julia> lmo = FrankWolfe.ProbabilitySimplexOracle(1.)
starting vector (of dimension n=3)
julia> p0 = [1., 0., 0.]
an optimal solution is returned in p_opt
julia> popt, _ = frankwolfe(f, grad!, lmo, p0; verbose=true);
Vanilla Frank-Wolfe Algorithm. MEMORYMODE: FrankWolfe.InplaceEmphasis() STEPSIZE: Adaptive EPSILON: 1.0e-7 MAXITERATION: 10000 TYPE: Float64 MOMENTUM: nothing GRADIENTTYPE: Nothing
Type Iteration Primal Dual Dual Gap Time It/sec
I 1 1.000000e+00 -1.000000e+00 2.000000e+00 0.000000e+00 Inf
Last 24 3.333333e-01 3.333332e-01 9.488992e-08 1.533181e+00 1.565373e+01
julia> p_opt 3-element Vector{Float64}: 0.33333334349923327 0.33333332783841896 0.3333333286623478 ```
Note that active-set based methods like the Away-step Frank-Wolfe and Blended Pairwise Conditional Gradients also include a post-processing step. In post-processing all values are recomputed and in particular the dual gap is computed at the current FW vertex, which might be slightly larger than the best dual gap observed as the gap is not monotonic. This is expected behavior.
Documentation and examples
To explore the content of the package, go to the documentation.
Beyond those presented in the documentation, many more use cases are implemented in the examples folder.
To run them, you will need to activate the test environment, which can be done simply with TestEnv.jl (we recommend you install it in your base Julia).
```julia julia> using TestEnv
julia> TestEnv.activate() "/tmp/jl_Ux8wKE/Project.toml"
necessary for plotting
julia> include("examples/plotutils.jl") julia> include("examples/linearregression.jl") ... ```
If you need the plotting utilities in your own code, make sure Plots.jl is included in your current project and run:
```julia using Plots using FrankWolfe
include(joinpath(dirname(pathof(FrankWolfe)), "../examples/plot_utils.jl")) ```
Owner
- Name: IOL Lab
- Login: ZIB-IOL
- Kind: organization
- Location: Germany
- Website: https://iol.zib.de
- Repositories: 27
- Profile: https://github.com/ZIB-IOL
Working on optimization and learning at the intersection of mathematics and computer science
Citation (CITATION.bib)
% for modern features of the package and newer versions
@article{besancon2025improvedalgorithmsnovelapplications,
title={Improved algorithms and novel applications of the {FrankWolfe.jl} library},
author={Mathieu Besan{\c{c}}on and Sébastien Designolle and Jannis Halbey and Deborah Hendrych and Dominik Kuzinowicz and Sebastian Pokutta and Hannah Troppens and Daniel Viladrich Herrmannsdoerfer and Elias Wirth},
year={2025},
eprint={2501.14613},
archivePrefix={arXiv},
primaryClass={math.OC},
url={https://arxiv.org/abs/2501.14613},
}
% general citation for the package and older versions
@article{besanccon2022frankwolfe,
title={{FrankWolfe.jl}: A High-Performance and Flexible Toolbox for {Frank-Wolfe} Algorithms and Conditional Gradients},
author={Besan{\c{c}}on, Mathieu and Carderera, Alejandro and Pokutta, Sebastian},
journal={INFORMS Journal on Computing},
year={2022},
publisher={INFORMS}
}
% to use the monotonic step size strategies
@article{carderera2021simple,
title={Simple steps are all you need: {Frank-Wolfe} and generalized self-concordant functions},
author={Carderera, Alejandro and Besan{\c{c}}on, Mathieu and Pokutta, Sebastian},
journal={Proceedings of Advances in Neural Information Processing Systems},
volume={34},
year={2021}
}
@article{carderera2024simple,
title={Scalable {Frank-Wolfe} on Generalized Self-Concordant Functions via Simple Steps},
author={Carderera, Alejandro and Besan{\c{c}}on, Mathieu and Pokutta, Sebastian},
journal={SIAM Journal on Optimization},
volume = {34},
number = {3},
pages = {2231-2258},
doi = {10.1137/23M1616789},
year={2024},
publisher={SIAM},
eprint={2105.13913},
archivePrefix={arXiv},
primaryClass={math.OC}
}
% for blended pairwise
@article{tsuji2022pairwise,
title={Pairwise Conditional Gradients without Swap Steps and Sparser Kernel Herding},
author={Tsuji, Kazuma and Tanaka, Ken’ichiro and Pokutta, Sebastian},
journal={Proceedings of International Conference on Machine Learning},
pages={21864--21883},
year={2022},
}
% for the stochastic Frank-Wolfe with momentum
@InProceedings{pmlr-v162-macdonald22a,
title = {Interpretable Neural Networks with {Frank-Wolfe}: Sparse Relevance Maps and Relevance Orderings},
author = {Macdonald, Jan and Besan{\c{c}}on, Mathieu and Pokutta, Sebastian},
booktitle = {Proceedings of the 39th International Conference on Machine Learning},
pages = {14699--14716},
year = {2022},
editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan},
volume = {162},
series = {Proceedings of Machine Learning Research},
month = {17--23 Jul},
publisher = {PMLR},
pdf = {https://proceedings.mlr.press/v162/macdonald22a/macdonald22a.pdf},
url = {https://proceedings.mlr.press/v162/macdonald22a.html},
}
% for active set sparsification
@inproceedings{wirth2024pivotingframeworkfrankwolfealgorithms,
title={The Pivoting Framework: {Frank-Wolfe} Algorithms with Active Set Size Control},
author={Wirth, Elias and Besançon, Mathieu and Pokutta, Sebastian},
year={2025},
eprint={2407.11760},
archivePrefix={arXiv},
primaryClass={math.OC},
booktitle={The 28th International Conference on Artificial Intelligence and Statistics},
url={https://arxiv.org/abs/2407.11760}
}
% for the secant line search
@inproceedings{hendrych2025secantlinesearchfrankwolfe,
title={Secant Line Search for {Frank-Wolfe} Algorithms},
author={Deborah Hendrych and Mathieu Besançon and David Martínez-Rubio and Sebastian Pokutta},
year={2025},
eprint={2501.18775},
archivePrefix={arXiv},
primaryClass={math.OC},
url={https://arxiv.org/abs/2501.18775},
booktitle={Forty-second International Conference on Machine Learning}
}
% for the direct solve active set
@misc{halbey2025efficientquadraticcorrectionsfrankwolfe,
title={Efficient Quadratic Corrections for {Frank-Wolfe} Algorithms},
author={Jannis Halbey and Seta Rakotomandimby and Mathieu Besançon and Sébastien Designolle and Sebastian Pokutta},
year={2025},
eprint={2506.02635},
archivePrefix={arXiv},
primaryClass={math.OC},
url={https://arxiv.org/abs/2506.02635},
}
GitHub Events
Total
- Fork event: 5
- Create event: 86
- Commit comment event: 43
- Release event: 16
- Issues event: 18
- Watch event: 18
- Delete event: 56
- Member event: 3
- Issue comment event: 89
- Push event: 689
- Pull request review comment event: 50
- Pull request review event: 75
- Pull request event: 138
Last Year
- Fork event: 5
- Create event: 86
- Commit comment event: 43
- Release event: 16
- Issues event: 18
- Watch event: 18
- Delete event: 56
- Member event: 3
- Issue comment event: 89
- Push event: 689
- Pull request review comment event: 50
- Pull request review event: 75
- Pull request event: 138
Committers
Last synced: 9 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Mathieu Besançon | m****n@g****m | 566 |
| Sebastian Pokutta | 2****a | 264 |
| alejandro-carderera | a****a@g****m | 64 |
| Sébastien Designolle | s****e@g****m | 56 |
| dhendryc | 9****c | 36 |
| Jonathan Geuter | j****r@g****e | 31 |
| Jannis H | 4****l | 26 |
| setarakotomandimby | 8****2 | 14 |
| hannahtro | 4****o | 12 |
| github-actions[bot] | 4****] | 7 |
| Guillaume Dalle | 2****e | 5 |
| Zev Woodstock | w****k@z****e | 4 |
| dviladrich95 | 3****5 | 4 |
| Elias Wirth | 6****h | 2 |
| Zev Woodstock | 9****k | 2 |
| Hendrych | d****c@m****e | 2 |
| Jeremiah | 4****s | 1 |
| Victor Thouvenot | 1****t | 1 |
| Wenjie Xiao | 1****2 | 1 |
| Troppens | h****n@m****e | 1 |
| Mathieu Besancon | b****n@z****e | 1 |
| Hendrych | d****c@o****e | 1 |
| CompatHelper Julia | c****y@j****g | 1 |
| ZWoodstock | 9****k | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 61
- Total pull requests: 292
- Average time to close issues: 10 months
- Average time to close pull requests: 22 days
- Total issue authors: 12
- Total pull request authors: 20
- Average comments per issue: 3.38
- Average comments per pull request: 0.93
- Merged pull requests: 241
- Bot issues: 0
- Bot pull requests: 7
Past Year
- Issues: 16
- Pull requests: 132
- Average time to close issues: 18 days
- Average time to close pull requests: 13 days
- Issue authors: 8
- Pull request authors: 11
- Average comments per issue: 1.0
- Average comments per pull request: 0.75
- Merged pull requests: 97
- Bot issues: 0
- Bot pull requests: 3
Top Authors
Issue Authors
- matbesancon (22)
- pokutta (13)
- gdalle (8)
- dhendryc (8)
- JannisHal (2)
- Mettush (1)
- WenjieXiao-2022 (1)
- lsandig (1)
- alejandro-carderera (1)
- giommazz (1)
- odow (1)
- sebastiendesignolle (1)
- JuliaTagBot (1)
Pull Request Authors
- matbesancon (156)
- dhendryc (51)
- JannisHal (44)
- sebastiendesignolle (31)
- pokutta (18)
- gdalle (10)
- WenjieXiao-2022 (9)
- github-actions[bot] (8)
- zevwoodstock (5)
- dviladrich95 (5)
- elwirth (4)
- j-geuter (4)
- odow (2)
- victorthouvenot (2)
- SetaR0202 (2)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- julia 24 total
- Total dependent packages: 5
- Total dependent repositories: 0
- Total versions: 92
juliahub.com: FrankWolfe
Julia implementation for various Frank-Wolfe and Conditional Gradient variants
- Documentation: https://docs.juliahub.com/General/FrankWolfe/stable/
- License: MIT
-
Latest release: 0.5.6
published 5 months ago
Rankings
Dependencies
- JuliaRegistries/TagBot v1 composite
- actions/cache v1 composite
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- julia-actions/julia-buildpkg v1 composite
- julia-actions/julia-processcoverage v1 composite
- julia-actions/julia-runtest v1 composite
- julia-actions/setup-julia v1 composite
- actions/checkout v2 composite
- julia-actions/setup-julia latest composite