labodock

LABODOCK: A Colab-Based Molecular Docking Tools

https://github.com/ryanzr/labodock

Science Score: 57.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 15 DOI reference(s) in README
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (11.8%) to scientific vocabulary

Keywords

autodock-vina cheminformatics drug-design google-colab molecular-docking plip virtual-screening
Last synced: 6 months ago · JSON representation ·

Repository

LABODOCK: A Colab-Based Molecular Docking Tools

Basic Info
  • Host: GitHub
  • Owner: RyanZR
  • License: mit
  • Language: Jupyter Notebook
  • Default Branch: main
  • Homepage:
  • Size: 5.03 MB
Statistics
  • Stars: 45
  • Watchers: 3
  • Forks: 12
  • Open Issues: 1
  • Releases: 2
Topics
autodock-vina cheminformatics drug-design google-colab molecular-docking plip virtual-screening
Created over 3 years ago · Last pushed about 1 year ago
Metadata Files
Readme Changelog License Citation

README.md

LABODOCK

Effortless Docking with Google Colab

status version license DOI

LABODOCK hosts a collection of Jupyter Notebooks that provides straightforward approach to molecular docking on Google Colab with minimal coding proficiency. Through leveraging well-established cheminformatic tools and Google Colab's cloud computing capabilities, this repository aimed to streamline the entire molecular docking protocols, automating various pre- and post-docking processes for seamless, intuitive and interactive in-silico experimentation. Current available notebooks are:

[!IMPORTANT] Do not use the Run all option at the beginning. Run the Install dependencies and softwares cell individually and wait for the session to restart. After that, you can use the Run all options if you want.

Features

  • Intuitive and user-friendly form field
  • Autodock Vina-driven molecular docking operation
  • PLIP-integrated binding interaction analysis with bar chart
  • ✨ Automated docking result clustering: **
    • Best-Pose: Pose with best docking score from each ligand
    • LABO-RMSD: Pose with lowest LABO-RMSD from each ligand
  • Six grid box defining methods:
    • LaBOX
    • eBoxSize
    • eBoxSize-Mod
    • Autodock-Grid
    • Manual-Mode
    • Defined-by-Res
  • Three RMSD calculation methods:
    • LABO_RMSD: Based on RDKit's maximum common substructure search
    • HUNG_RMSD: Based on spyrmsd's Hungarian algorithm calculation
    • SYMM_RMSD: Based on spyrmsd's symmetrical-corrected calculation
  • ✨ Maximum common substructure PNG generation
  • ✨ 3D basic informative molecular visualization with colour scale:
    • Hydrophobicity scale (Kyte and Doolittle, 1982)
    • Isoelectric points scale

** Exclusive for virtual screening protocol.

Images

| | |-| | BMD Redocked Fenebrutinib (red) Superimposed on 9AJ (gray) with PDB 5VFI |

| | |-| | BMD Docking Scores and RMSDs of Redocked Fenebrutinib |

| | |-| | VS Docked CHEMBL161052 in Slab View with PDB 4PH9 sagittal section |

| | |-| | VS PLIP Binding Interaction Frequency Bar Chart |

| | |-| | VS Top 10 Poses with Lowest LABO-RMSD from each ligands |

Limitation

  • These notebooks are designed for Google Colab and may not work on other platform.
  • These notebooks provide a simple pipeline for illustrating molecular docking and do not necessarily reflect the standard protocol.

References

  1. Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), Article W1. https://doi.org/10.1093/nar/gkab294
  2. Feinstein, W. P., & Brylinski, M. (2015). Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. Journal of Cheminformatics, 7, 18. https://doi.org/10.1186/s13321-015-0067-5
  3. Meli, R., & Biggin, P. C. (2020). spyrmsd: Symmetry-corrected RMSD calculations in Python. Journal of Cheminformatics, 12(1), 49. https://doi.org/10.1186/s13321-020-00455-2
  4. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
  5. Seshadri, K., Liu, P., & Koes, D. R. (2020). The 3Dmol.js learning environment: A classroom response system for 3D chemical structures. Journal of Chemical Education, 97(10), 3872–3876. https://doi.org/10.1021/acs.jchemed.0c00579
  6. Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. (Journal of Computational Chemistry, *31(2), Article 2. https://doi.org/10.1002/jcc.21334

License

Copyright (c) 2023 Ryan Loke \ Distributed under the MIT License. \ See LICENSE file for more information.

Owner

  • Name: Ryan Loke
  • Login: RyanZR
  • Kind: user
  • Location: Malaysia
  • Company: SEGi University Kota Damansara

Pharmacy student

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Loke"
  given-names: "Zhi Rong"
title: "LABODOCK: A Colab-Based Molecular Docking Tools"
version: 2.0.0
doi: 10.5281/zenodo.8246977
date-released: 2023-10-12
repository-code: https://github.com/RyanZR/labodock
keywords:
  - "drug design"
  - "molecular docking"
  - "virtual screening"
  - "google colab"
  - "autodock vina"
  - plip
  - chemoinformatics
license: MIT
url: "https://github.com/RyanZR/labodock"

GitHub Events

Total
  • Watch event: 9
  • Issue comment event: 4
  • Push event: 3
  • Fork event: 3
Last Year
  • Watch event: 9
  • Issue comment event: 4
  • Push event: 3
  • Fork event: 3