netmem

'netmem: Network Measures using Matrices' is an R Package

https://github.com/anespinosa/netmem

Science Score: 36.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: springer.com
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (16.6%) to scientific vocabulary

Keywords

matrices multilayer-networks network-analysis network-science r r-package rstats sna social-network social-network-analysis sociology
Last synced: 6 months ago · JSON representation

Repository

'netmem: Network Measures using Matrices' is an R Package

Basic Info
Statistics
  • Stars: 12
  • Watchers: 1
  • Forks: 0
  • Open Issues: 17
  • Releases: 1
Topics
matrices multilayer-networks network-analysis network-science r r-package rstats sna social-network social-network-analysis sociology
Created almost 6 years ago · Last pushed 10 months ago
Metadata Files
Readme License Code of conduct Codemeta

README.Rmd

---
output: github_document
---



```{r, include = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%"
)
```

# netmem: Network Measures using Matrices 

 
[![CRAN status](https://www.r-pkg.org/badges/version/netmem)](https://CRAN.R-project.org/package=netmem)
[![r-universe status badge](https://anespinosa.r-universe.dev/badges/netmem)](https://anespinosa.r-universe.dev/netmem)
[![](https://img.shields.io/badge/devel%20version-1.0--3-red.svg)](https://github.com/https://github.com/anespinosa/netmem)
[![Lifecycle: experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://www.tidyverse.org/lifecycle/#experimental)
[![Codecov test coverage](https://codecov.io/gh/anespinosa/netmem/branch/master/graph/badge.svg)](https://codecov.io/gh/anespinosa/netmem?branch=master)
[![CodeFactor](https://www.codefactor.io/repository/github/anespinosa/netmem/badge)](https://www.codefactor.io/repository/github/anespinosa/netmem)
[![AppVeyor build status](https://ci.appveyor.com/api/projects/status/github/anespinosa/netmem?branch=master&svg=true)](https://ci.appveyor.com/project/anespinosa/netmem)
[![R-CMD-check](https://github.com/anespinosa/netmem/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/anespinosa/netmem/actions/workflows/R-CMD-check.yaml)
[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)
[![Github All Releases](https://img.shields.io/github/downloads/anespinosa/netmem/total.svg)]()


The goal of [`netmem`](https://anespinosa.github.io/netmem/) is to make
available different measures to analyse and manipulate complex networks using
matrices.

```{r, echo=FALSE, message=FALSE, warning=FALSE}
# Check if the 'devtools' package is installed
if (!requireNamespace("devtools", quietly = TRUE)) {
  install.packages("devtools")
}

# Check if the 'emo' package is installed via devtools
if (!requireNamespace("emo", quietly = TRUE)) {
  devtools::install_github("hadley/emo")
}
```

`r emo::ji("pen")` Author/mantainer: [Alejandro
Espinosa-Rada](https://www.aespinosarada.com)

`r emo::ji("school")` [Current: Institute of Sociology, Pontificia Universidad Católica de Chile](https://sociologia.uc.cl)

`r emo::ji("school")` [Before: Social Networks Lab, ETH Zürich](https://sn.ethz.ch)

[![Follow me on Twitter/X](https://img.shields.io/badge/Follow me on
Twitter-9cf.svg)](https://x.com/aespinosarada)

The package implements different measures to analyse and manipulate complex
multilayer networks, from an ego-centric perspective, considering one-mode
networks, valued ties (i.e. *weighted* or *multiplex*) or with multiple levels.

## Citation

```{r echo=FALSE, results='asis'}
citation(package = "netmem")
```

## Functions currently available in [`netmem`](https://anespinosa.github.io/netmem/reference/index.html):

Utilities:

1. `matrix_report()`: Matrix report

2. `matrix_adjlist()`: Transform a matrix into an adjacency list

3. `matrix_projection()`: Unipartite projections

4. `matrix_to_edgelist()`: Transform a square matrix into an edge-list

5. `adj_to_matrix()`: Transform an adjacency list into a matrix

6. `adj_to_incidence()`: Transform an adjacency matrix into a incidence matrix

7. `cumulativeSumMatrices()`: Cumulative sum of matrices

8. `edgelist_to_matrix()`: Transform an edgelist into a matrix

9. `expand_matrix()`: Expand matrix

10. `extract_component()`: Extract components

11. `hypergraph()`: Hypergraphs

12. `perm_matrix()`: Permutation matrix

13. `perm_label()`: Permute labels of a matrix

14. `power_function()`: Power of a matrix

15. `meta_matrix()`: Meta matrix for multilevel networks

16. `minmax_overlap()`: Minimum/maximum overlap

17. `mix_matrix()`: Mixing matrix

18. `simplicial_complexes()`: Simplicial complexes

19. `structural_na()`: Structural missing data

20. `ego_net()`: Ego network

21. `zone_sample()`: Zone-2 sampling from second-mode

Ego and personal networks:

1. `eb_constraint()`: Constraint

2. `ei_index()`: Krackhardt and Stern's E-I index

3. `heterogeneity()`: Blau's and IQV index

4. `redundancy()`: Redundancy measures

Path distances:

1. `bfs_ugraph()`: Breath-first algorithm

2. `compound_relation()`: Relational composition

3. `count_geodesics()`: Count geodesic distances

4. `short_path()`: Shortest path

5. `wlocal_distances()`: Dijikstra's algorithm (one actor)

6. `wall_distances()`: Dijikstra's algorithm (all actors)

Signed networks:

1. `posneg_index()`: Positive-negative centrality

2. `struc_balance()`: Structural balance

Structural measures:

1. `gen_density()`: Generalized density

2. `gen_degree()`: Generalized degree

3. `multilevel_degree()`: Degree centrality for multilevel networks

4. `recip_coef()`: Reciprocity

5. `trans_coef()`: Transitivity

6. `trans_matrix()`: Transitivity matrix

7. `components_id()`: Components

8. `k_core()`: Generalized k-core

9. `dyadic_census()`: Dyad census

10. `multiplex_census()`: Multiplex triad census

11. `mixed_census()`: Multilevel triad and quadrilateral census

Cohesive subgroups:

1. `clique_table()`: Clique table

2. `dyad_triad_table()`: Forbidden triad table

3. `percolation_clique()`: Clique percolation

4. `q_analysis()`: Q-analysis

5. `shared_partners()`: Shared partners

Similarity measures:

1. `bonacich_norm()`: Bonacich normalization

2. `co_ocurrence()`: Co‐occurrence

3. `dist_sim_matrix()`: Structural similarities

4. `fractional_approach()`: Fractional approach

5. `jaccard()`: Jaccard similarity

Network inference:

1. `kp_reciprocity()`: Reciprocity of Katz and Powell

2. `z_arctest()`: Z test of the number of arcs

3. `triad_uman()`: Triad census analysis assuming U|MAN

4. `ind_rand_matrix()`: Independent random matrix

Geographic information:

1. `dist_geographic()`: Geographical distances

2. `spatial_cor()`: Spatial autocorrelation

Data currently available:

1. `FIFAego`: Ego FIFA

2. `FIFAex`: Outside FIFA

3. `FIFAin`: Inside FIFA

4. `krackhardt_friends`: Krackhardt friends

5. `lazega_lawfirm`: Lazega Law Firm

Additional data in [`classicnets: Classic Data of Social
Networks`](https://github.com/anespinosa/classicnets)

-----

# Quick overview of `netmem: Network Measures using Matrices`

-----

## Installation

You can install the development version from [GitHub](https://github.com/)
with:

```{r inst, eval=FALSE}
### OPTION 1
# install.packages("devtools")
devtools::install_github("anespinosa/netmem")

### OPTION 2
options(repos = c(
  netmem = "https://anespinosa.r-universe.dev",
  CRAN = "https://cloud.r-project.org"
))
install.packages("netmem")
```

```{r inst2}
library(netmem)
```

-----

## Multilevel Networks

Connections between individuals are often embedded in complex structures, which
shape actors’ expectations, behaviours and outcomes over time. These structures
can themselves be interdependent and exist at different levels. Multilevel
networks are a means by which we can represent this complex system by using
nodes and edges of different types. Check [this
book](https://www.springer.com/gp/book/9783319245188) edited by Emmanuel Lazega
and Tom A.B. Snijders or [this
book](https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128)
edited by David Knoke, Mario Diani, James Hollway and Dimitris Christopoulos.



For multilevel structures, we tend to collect the data in different matrices
representing the variation of ties within and between levels. Often, we describe
the connection between actors as an adjacency matrix and the relations between
levels through incidence matrices. The comfortable combination of these matrices
into a common structure would represent the multilevel network that could be
highly complex.

### Example

Let's assume that we have a multilevel network with two adjacency matrices, one valued matrix and two incidence matrices between them. - `A1`: Adjacency Matrix of the level 1 - `B1`: incidence Matrix between level 1 and level 2 - `A2`: Adjacency Matrix of the level 2 - `B2`: incidence Matrix between level 2 and level 3 - `A3`: Valued Matrix of the level 3
Create the data ```{r multilevel_example} A1 <- matrix(c( 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0 ), byrow = TRUE, ncol = 5) B1 <- matrix(c( 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1 ), byrow = TRUE, ncol = 3) A2 <- matrix(c( 0, 1, 1, 1, 0, 0, 1, 0, 0 ), byrow = TRUE, nrow = 3) B2 <- matrix(c( 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1 ), byrow = TRUE, ncol = 4) A3 <- matrix(c( 0, 1, 3, 1, 1, 0, 0, 0, 3, 0, 0, 5, 1, 0, 5, 0 ), byrow = TRUE, ncol = 4) ``` We will start with a report of the matrices: ```{r matrix_report} matrix_report(A1) matrix_report(B1) matrix_report(A2) matrix_report(B2) matrix_report(A3) ``` What is the density of some of the matrices? ```{r multilevel_example2} matrices <- list(A1, B1, A2, B2) gen_density(matrices, multilayer = TRUE) ``` How about the degree centrality of the entire structure? ```{r multil, warning=FALSE} multilevel_degree(A1, B1, A2, B2, complete = TRUE) ``` Besides, we can perform a *k*-core analysis of one of the levels using the information of an incidence matrix ```{r multil2, warning=FALSE} k_core(A1, B1, multilevel = TRUE) ``` This package also allows performing complex census for multilevel networks. ```{r multil3} mixed_census(A2, t(B1), B2, quad = TRUE) ``` ----- ### Ego measures When we are interested in one particular actor, we could perform different network measures. For example, actor `e` has connections with all the other actors in the network. Therefore, we could estimate some of Ronald Burt's measures. ```{r ego} # First we will assign names to the matrix rownames(A1) <- letters[1:nrow(A1)] colnames(A1) <- letters[1:ncol(A1)] eb_constraint(A1, ego = "e") redundancy(A1, ego = "e") ``` Also, sometimes we might want to subset a group of actors surrounding an ego. ```{r ego2} ego_net(A1, ego = "e") ``` ----- ### One-mode network This package expand some measures for one-mode networks, such as the generalized degree centrality. Suppose we consider a valued matrix `A3`. If `alpha=0` then it would only count the direct connections. But, adding the tuning parameter `alpha=0.5` would determine the relative importance of the number of ties compared to tie weights. ```{r onem} gen_degree(A3, digraph = FALSE, weighted = TRUE) ``` Also, we could conduct some exploratory analysis using the normalized degree of an incidence matrix. ```{r onem2} gen_degree(B1, bipartite = TRUE, normalized = TRUE) ``` This package also implements some analysis of dyads. ```{r onem3} # dyad census dyadic_census(A1) # Katz and Powell reciprocity kp_reciprocity(A1) # Z test of the number of arcs z_arctest(A1) ``` We can also check the triad census assuming conditional uniform distribution considering different types of dyads **(U|MAN)** ```{r onem4} triad_uman(A1) ``` ----- ### Code of conduct Please note that this project is released with a [Contributor Code of Conduct](https://anespinosa.github.io/netmem/CODE_OF_CONDUCT.html). By participating in this project you agree to abide by its terms. ----- ### To-do list ```{r todo1} # library(todor) # todor::todor_package(c("TODO", "FIXME")) ``` ----- ### Other related R packages - [`{bipartite}`](https://github.com/biometry/bipartite) - [`{migraph}`](https://github.com/snlab-ch/migraph) - [`{multinet}`](https://CRAN.R-project.org/package=multinet) - [`{muxViz}`](https://github.com/manlius/muxViz) - [`{tnet}`](https://toreopsahl.com/tnet/) - [`{xUCINET}`](https://www.analyzingsocialnetworksusingr.com/xucinet)

Owner

  • Name: Alejandro Espinosa-Rada
  • Login: anespinosa
  • Kind: user
  • Company: ETH Zürich

Alejandro Espinosa-Rada is a Postdoctoral Researcher at the Social Networks Lab in ETH Zürich.

CodeMeta (codemeta.json)

{
  "@context": "https://doi.org/10.5063/schema/codemeta-2.0",
  "@type": "SoftwareSourceCode",
  "identifier": "netmem",
  "description": "Measures to describe and manipulate networks using matrices. ",
  "name": "netmem: Social Network Measures using Matrices",
  "codeRepository": "https://github.com/anespinosa/netmem",
  "issueTracker": "https://github.com/anespinosa/netmem/issues",
  "license": "https://spdx.org/licenses/GPL-3.0",
  "version": "1.0.3",
  "programmingLanguage": {
    "@type": "ComputerLanguage",
    "name": "R",
    "url": "https://r-project.org"
  },
  "runtimePlatform": "R version 4.1.2 (2021-11-01)",
  "author": [
    {
      "@type": "Person",
      "givenName": "Alejandro",
      "familyName": "Espinosa-Rada",
      "email": "alejandro.espinosa@gess.ethz.ch",
      "@id": "https://orcid.org/0000-0003-4177-1912"
    }
  ],
  "maintainer": [
    {
      "@type": "Person",
      "givenName": "Alejandro",
      "familyName": "Espinosa-Rada",
      "email": "alejandro.espinosa@gess.ethz.ch",
      "@id": "https://orcid.org/0000-0003-4177-1912"
    }
  ],
  "softwareSuggestions": [
    {
      "@type": "SoftwareApplication",
      "identifier": "knitr",
      "name": "knitr",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=knitr"
    },
    {
      "@type": "SoftwareApplication",
      "identifier": "rmarkdown",
      "name": "rmarkdown",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=rmarkdown"
    },
    {
      "@type": "SoftwareApplication",
      "identifier": "covr",
      "name": "covr",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=covr"
    },
    {
      "@type": "SoftwareApplication",
      "identifier": "testthat",
      "name": "testthat",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=testthat"
    },
    {
      "@type": "SoftwareApplication",
      "identifier": "usethis",
      "name": "usethis",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=usethis"
    },
    {
      "@type": "SoftwareApplication",
      "identifier": "styler",
      "name": "styler",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=styler"
    }
  ],
  "softwareRequirements": {
    "1": {
      "@type": "SoftwareApplication",
      "identifier": "R",
      "name": "R",
      "version": ">= 4.0.0"
    },
    "2": {
      "@type": "SoftwareApplication",
      "identifier": "igraph",
      "name": "igraph",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=igraph"
    },
    "3": {
      "@type": "SoftwareApplication",
      "identifier": "Matrix",
      "name": "Matrix",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=Matrix"
    },
    "4": {
      "@type": "SoftwareApplication",
      "identifier": "stats",
      "name": "stats"
    },
    "SystemRequirements": null
  },
  "fileSize": "1720.523KB",
  "readme": "https://github.com/anespinosa/netmem/blob/master/README.md",
  "contIntegration": [
    "https://github.com/anespinosa/netmem/actions",
    "https://ci.appveyor.com/project/anespinosa/netmem",
    "https://codecov.io/gh/anespinosa/netmem?branch=master"
  ],
  "developmentStatus": "https://www.tidyverse.org/lifecycle/#experimental",
  "keywords": [
    "social-network-analysis",
    "sociology",
    "matrices",
    "network-science",
    "multilevel-networks",
    "network-analysis",
    "r",
    "r-package",
    "rstats",
    "multilayer-networks"
  ]
}

GitHub Events

Total
  • Issues event: 2
  • Watch event: 2
  • Issue comment event: 1
  • Push event: 9
Last Year
  • Issues event: 2
  • Watch event: 2
  • Issue comment event: 1
  • Push event: 9

Dependencies

DESCRIPTION cran
  • R >= 4.0.0 depends
  • Matrix * imports
  • igraph * imports
  • stats * imports
  • covr * suggests
  • knitr * suggests
  • rmarkdown * suggests
  • styler * suggests
  • testthat * suggests
  • usethis * suggests
.github/workflows/R-CMD-check.yaml actions
  • actions/checkout v2 composite
  • r-lib/actions/check-r-package v1 composite
  • r-lib/actions/setup-pandoc v1 composite
  • r-lib/actions/setup-r v1 composite
  • r-lib/actions/setup-r-dependencies v1 composite
.github/workflows/lint.yaml actions
  • actions/checkout v2 composite
  • r-lib/actions/setup-r v1 composite
  • r-lib/actions/setup-r-dependencies v1 composite
.github/workflows/check-standard.yaml actions
  • actions/checkout v3 composite
  • r-lib/actions/check-r-package v2 composite
  • r-lib/actions/setup-pandoc v2 composite
  • r-lib/actions/setup-r v2 composite
  • r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/pkgdown.yaml actions
  • JamesIves/github-pages-deploy-action v4.4.1 composite
  • actions/checkout v3 composite
  • r-lib/actions/setup-pandoc v2 composite
  • r-lib/actions/setup-r v2 composite
  • r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/test-coverage.yaml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v3 composite
  • r-lib/actions/setup-r v2 composite
  • r-lib/actions/setup-r-dependencies v2 composite