DeepEquilibriumNetworks
Implicit Layer Machine Learning via Deep Equilibrium Networks, O(1) backpropagation with accelerated convergence.
Science Score: 54.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
✓Committers with academic emails
1 of 10 committers (10.0%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.9%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
Implicit Layer Machine Learning via Deep Equilibrium Networks, O(1) backpropagation with accelerated convergence.
Basic Info
- Host: GitHub
- Owner: SciML
- License: mit
- Language: Julia
- Default Branch: main
- Homepage: https://docs.sciml.ai/DeepEquilibriumNetworks/stable/
- Size: 3.59 MB
Statistics
- Stars: 57
- Watchers: 4
- Forks: 6
- Open Issues: 1
- Releases: 26
Topics
Metadata Files
README.md
DeepEquilibriumNetworks
DeepEquilibriumNetworks.jl is a framework built on top of DifferentialEquations.jl and Lux.jl enabling the efficient training and inference for Deep Equilibrium Networks (Infinitely Deep Neural Networks).
Installation
julia
using Pkg
Pkg.add("DeepEquilibriumNetworks")
Quickstart
```julia using DeepEquilibriumNetworks, Lux, Random, NonlinearSolve, Zygote, SciMLSensitivity
using LuxCUDA, LuxAMDGPU ## Install and Load for GPU Support. See https://lux.csail.mit.edu/dev/manual/gpu_management
seed = 0 rng = Random.default_rng() Random.seed!(rng, seed)
model = Chain(Dense(2 => 2), DeepEquilibriumNetwork( Parallel(+, Dense(2 => 2; usebias=false), Dense(2 => 2; usebias=false)), NewtonRaphson()))
gdev = gpudevice() cdev = cpudevice()
ps, st = Lux.setup(rng, model) |> gdev x = rand(rng, Float32, 2, 3) |> gdev y = rand(rng, Float32, 2, 3) |> gdev
model(x, ps, st)
gs = only(Zygote.gradient(p -> sum(abs2, first(model(x, p, st)) .- y), ps)) ```
Citation
If you are using this project for research or other academic purposes consider citing our paper:
bibtex
@article{pal2022continuous,
title={Continuous Deep Equilibrium Models: Training Neural ODEs Faster by Integrating Them to Infinity},
author={Pal, Avik and Edelman, Alan and Rackauckas, Christopher},
booktitle={2023 IEEE High Performance Extreme Computing Conference (HPEC)},
year={2023}
}
For specific algorithms, check the respective documentations and cite the corresponding papers.
Owner
- Name: SciML Open Source Scientific Machine Learning
- Login: SciML
- Kind: organization
- Email: contact@chrisrackauckas.com
- Website: https://sciml.ai
- Twitter: SciML_Org
- Repositories: 170
- Profile: https://github.com/SciML
Open source software for scientific machine learning
Citation (CITATION.bib)
@article{pal2022continuous,
title={Continuous Deep Equilibrium Models: Training Neural ODEs Faster by Integrating Them to Infinity},
author={Pal, Avik and Edelman, Alan and Rackauckas, Christopher},
booktitle={2023 IEEE High Performance Extreme Computing Conference (HPEC)},
year={2023}
}
GitHub Events
Total
- Release event: 1
- Watch event: 6
- Delete event: 7
- Issue comment event: 3
- Push event: 15
- Pull request review event: 1
- Pull request review comment event: 1
- Pull request event: 21
- Fork event: 1
- Create event: 10
Last Year
- Release event: 1
- Watch event: 6
- Delete event: 7
- Issue comment event: 3
- Push event: 15
- Pull request review event: 1
- Pull request review comment event: 1
- Pull request event: 21
- Fork event: 1
- Create event: 10
Committers
Last synced: 6 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Avik Pal | a****l@i****n | 422 |
| Christopher Rackauckas | a****s@c****m | 36 |
| CompatHelper Julia | c****y@j****g | 23 |
| Arno Strouwen | a****n@t****e | 13 |
| dependabot[bot] | 4****] | 13 |
| Anant Thazhemadam | a****m@g****m | 5 |
| Krishna Bhogaonker | c****q@g****m | 2 |
| Hendrik Ranocha | m****l@r****e | 1 |
| David Widmann | d****n@i****e | 1 |
| Anas Abdelrehim | 7****R | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 11
- Total pull requests: 169
- Average time to close issues: 5 months
- Average time to close pull requests: 14 days
- Total issue authors: 6
- Total pull request authors: 10
- Average comments per issue: 6.27
- Average comments per pull request: 0.5
- Merged pull requests: 90
- Bot issues: 0
- Bot pull requests: 111
Past Year
- Issues: 0
- Pull requests: 23
- Average time to close issues: N/A
- Average time to close pull requests: 2 days
- Issue authors: 0
- Pull request authors: 6
- Average comments per issue: 0
- Average comments per pull request: 0.0
- Merged pull requests: 16
- Bot issues: 0
- Bot pull requests: 11
Top Authors
Issue Authors
- avik-pal (6)
- yadmtr (1)
- ChrisRackauckas (1)
- AnasAbdelR (1)
- EthanDecleyn (1)
- JuliaTagBot (1)
Pull Request Authors
- github-actions[bot] (104)
- avik-pal (28)
- ChrisRackauckas (19)
- dependabot[bot] (19)
- ArnoStrouwen (13)
- thazhemadam (3)
- 00krishna (2)
- ranocha (1)
- devmotion (1)
- AnasAbdelR (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- julia 3 total
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 26
juliahub.com: DeepEquilibriumNetworks
Implicit Layer Machine Learning via Deep Equilibrium Networks, O(1) backpropagation with accelerated convergence.
- Homepage: https://docs.sciml.ai/DeepEquilibriumNetworks/stable/
- Documentation: https://docs.juliahub.com/General/DeepEquilibriumNetworks/stable/
- License: MIT
-
Latest release: 2.4.0
published 11 months ago
Rankings
Dependencies
- actions/cache v1 composite
- actions/checkout v2 composite
- codecov/codecov-action v2 composite
- julia-actions/julia-buildpkg v1 composite
- julia-actions/julia-processcoverage v1 composite
- julia-actions/julia-runtest v1 composite
- julia-actions/setup-julia v1 composite
- julia-actions/setup-julia v1 composite
- actions/checkout v2 composite
- codecov/codecov-action v2 composite
- julia-actions/julia-processcoverage v1 composite
- julia-actions/setup-julia v1 composite
- actions/checkout v1 composite
- julia-actions/setup-julia latest composite
- actions/checkout v3 composite
- julia-actions/julia-buildpkg v1 composite
- julia-actions/julia-invalidations v1 composite
- julia-actions/setup-julia v1 composite
- JuliaRegistries/TagBot v1 composite