supervision

We write your reusable computer vision tools. 💜

https://github.com/roboflow/supervision

Science Score: 54.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
    4 of 108 committers (3.7%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (13.6%) to scientific vocabulary

Keywords

classification coco computer-vision deep-learning hacktoberfest image-processing instance-segmentation low-code machine-learning metrics object-detection oriented-bounding-box pascal-voc python pytorch tensorflow tracking video-processing yolo

Keywords from Contributors

yolov5s yolo11 onnx yolov8 agents inference tensorrt vit jetson inference-server
Last synced: 6 months ago · JSON representation ·

Repository

We write your reusable computer vision tools. 💜

Basic Info
Statistics
  • Stars: 34,439
  • Watchers: 213
  • Forks: 2,791
  • Open Issues: 129
  • Releases: 33
Topics
classification coco computer-vision deep-learning hacktoberfest image-processing instance-segmentation low-code machine-learning metrics object-detection oriented-bounding-box pascal-voc python pytorch tensorflow tracking video-processing yolo
Created about 3 years ago · Last pushed 6 months ago
Metadata Files
Readme Contributing License Code of conduct Citation Codeowners

README.md


[notebooks](https://github.com/roboflow/notebooks) | [inference](https://github.com/roboflow/inference) | [autodistill](https://github.com/autodistill/autodistill) | [maestro](https://github.com/roboflow/multimodal-maestro)
[![version](https://badge.fury.io/py/supervision.svg)](https://badge.fury.io/py/supervision) [![downloads](https://img.shields.io/pypi/dm/supervision)](https://pypistats.org/packages/supervision) [![snyk](https://snyk.io/advisor/python/supervision/badge.svg)](https://snyk.io/advisor/python/supervision) [![license](https://img.shields.io/pypi/l/supervision)](https://github.com/roboflow/supervision/blob/main/LICENSE.md) [![python-version](https://img.shields.io/pypi/pyversions/supervision)](https://badge.fury.io/py/supervision) [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow/supervision/blob/main/demo.ipynb) [![gradio](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Roboflow/Annotators) [![discord](https://img.shields.io/discord/1159501506232451173?logo=discord&label=discord&labelColor=fff&color=5865f2&link=https%3A%2F%2Fdiscord.gg%2FGbfgXGJ8Bk)](https://discord.gg/GbfgXGJ8Bk) [![built-with-material-for-mkdocs](https://img.shields.io/badge/Material_for_MkDocs-526CFE?logo=MaterialForMkDocs&logoColor=white)](https://squidfunk.github.io/mkdocs-material/)
roboflow%2Fsupervision | Trendshift

👋 hello

We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us! 🤝

💻 install

Pip install the supervision package in a Python>=3.9 environment.

bash pip install supervision

Read more about conda, mamba, and installing from source in our guide.

🔥 quickstart

models

Supervision was designed to be model agnostic. Just plug in any classification, detection, or segmentation model. For your convenience, we have created connectors for the most popular libraries like Ultralytics, Transformers, or MMDetection.

```python import cv2 import supervision as sv from ultralytics import YOLO

image = cv2.imread(...) model = YOLO("yolov8s.pt") result = model(image)[0] detections = sv.Detections.from_ultralytics(result)

len(detections)

5

```

👉 more model connectors - inference Running with [Inference](https://github.com/roboflow/inference) requires a [Roboflow API KEY](https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key). ```python import cv2 import supervision as sv from inference import get_model image = cv2.imread(...) model = get_model(model_id="yolov8s-640", api_key=) result = model.infer(image)[0] detections = sv.Detections.from_inference(result) len(detections) # 5 ```

annotators

Supervision offers a wide range of highly customizable annotators, allowing you to compose the perfect visualization for your use case.

```python import cv2 import supervision as sv

image = cv2.imread(...) detections = sv.Detections(...)

boxannotator = sv.BoxAnnotator() annotatedframe = box_annotator.annotate( scene=image.copy(), detections=detections) ```

https://github.com/roboflow/supervision/assets/26109316/691e219c-0565-4403-9218-ab5644f39bce

datasets

Supervision provides a set of utils that allow you to load, split, merge, and save datasets in one of the supported formats.

```python import supervision as sv from roboflow import Roboflow

project = Roboflow().workspace().project() dataset = project.version().download("coco")

ds = sv.DetectionDataset.fromcoco( imagesdirectorypath=f"{dataset.location}/train", annotationspath=f"{dataset.location}/train/_annotations.coco.json", )

path, image, annotation = ds[0] # loads image on demand

for path, image, annotation in ds: # loads image on demand ```

👉 more dataset utils - load ```python dataset = sv.DetectionDataset.from_yolo( images_directory_path=..., annotations_directory_path=..., data_yaml_path=... ) dataset = sv.DetectionDataset.from_pascal_voc( images_directory_path=..., annotations_directory_path=... ) dataset = sv.DetectionDataset.from_coco( images_directory_path=..., annotations_path=... ) ``` - split ```python train_dataset, test_dataset = dataset.split(split_ratio=0.7) test_dataset, valid_dataset = test_dataset.split(split_ratio=0.5) len(train_dataset), len(test_dataset), len(valid_dataset) # (700, 150, 150) ``` - merge ```python ds_1 = sv.DetectionDataset(...) len(ds_1) # 100 ds_1.classes # ['dog', 'person'] ds_2 = sv.DetectionDataset(...) len(ds_2) # 200 ds_2.classes # ['cat'] ds_merged = sv.DetectionDataset.merge([ds_1, ds_2]) len(ds_merged) # 300 ds_merged.classes # ['cat', 'dog', 'person'] ``` - save ```python dataset.as_yolo( images_directory_path=..., annotations_directory_path=..., data_yaml_path=... ) dataset.as_pascal_voc( images_directory_path=..., annotations_directory_path=... ) dataset.as_coco( images_directory_path=..., annotations_path=... ) ``` - convert ```python sv.DetectionDataset.from_yolo( images_directory_path=..., annotations_directory_path=..., data_yaml_path=... ).as_pascal_voc( images_directory_path=..., annotations_directory_path=... ) ```

🎬 tutorials

Want to learn how to use Supervision? Explore our how-to guides, end-to-end examples, cheatsheet, and cookbooks!


Dwell Time Analysis with Computer Vision | Real-Time Stream Processing Dwell Time Analysis with Computer Vision | Real-Time Stream Processing

Created: 5 Apr 2024

Learn how to use computer vision to analyze wait times and optimize processes. This tutorial covers object detection, tracking, and calculating time spent in designated zones. Use these techniques to improve customer experience in retail, traffic management, or other scenarios.


Speed Estimation & Vehicle Tracking | Computer Vision | Open Source Speed Estimation & Vehicle Tracking | Computer Vision | Open Source

Created: 11 Jan 2024

Learn how to track and estimate the speed of vehicles using YOLO, ByteTrack, and Roboflow Inference. This comprehensive tutorial covers object detection, multi-object tracking, filtering detections, perspective transformation, speed estimation, visualization improvements, and more.

## 💜 built with supervision Did you build something cool using supervision? [Let us know!](https://github.com/roboflow/supervision/discussions/categories/built-with-supervision) https://user-images.githubusercontent.com/26109316/207858600-ee862b22-0353-440b-ad85-caa0c4777904.mp4 https://github.com/roboflow/supervision/assets/26109316/c9436828-9fbf-4c25-ae8c-60e9c81b3900 https://github.com/roboflow/supervision/assets/26109316/3ac6982f-4943-4108-9b7f-51787ef1a69f ## 📚 documentation Visit our [documentation](https://roboflow.github.io/supervision) page to learn how supervision can help you build computer vision applications faster and more reliably. ## 🏆 contribution We love your input! Please see our [contributing guide](https://github.com/roboflow/supervision/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!


Owner

  • Name: Roboflow
  • Login: roboflow
  • Kind: organization
  • Email: hello@roboflow.com
  • Location: United States of America

Citation (CITATION.cff)

# This CITATION.cff file was generated with cffinit.
# Visit https://bit.ly/cffinit to generate yours today!

cff-version: 1.2.0
title: Supervision
message: >-
  If you use this software, please cite it using the
  metadata from this file.
type: software
authors:
  - given-names: Roboflow
    email: support@roboflow.com
repository-code: 'https://github.com/roboflow/supervision'
url: 'https://roboflow.github.io/supervision/'
abstract: >-
  supervision features a range of utilities for use in
  computer vision projects, from detections processing and
  filtering to confusion matrix calculation.
keywords:
  - computer vision
  - image processing
  - video processing
license: MIT

Committers

Last synced: 10 months ago

All Time
  • Total Commits: 2,943
  • Total Committers: 108
  • Avg Commits per committer: 27.25
  • Development Distribution Score (DDS): 0.76
Past Year
  • Commits: 1,033
  • Committers: 50
  • Avg Commits per committer: 20.66
  • Development Distribution Score (DDS): 0.734
Top Committers
Name Email Commits
SkalskiP p****2@g****m 705
pre-commit-ci[bot] 6****] 472
Onuralp SEZER t****r@g****m 316
dependabot[bot] 4****] 294
LinasKo l****s@g****m 277
James Gallagher j****g@j****g 99
hd h****a@g****m 93
Linas Kondrackis l****v@s****m 80
kirilllzaitsev k****8@g****m 73
Christoforos Aristeidou a****s@g****m 41
Mayank Agarwal m****2@g****m 33
magda skoczen m****o@o****l 26
Bhavay Malhotra r****1@g****m 25
Jeslin P James j****7@g****m 21
Nick Herrig n****g@g****m 20
Adonai Vera 4****a 18
Kader Miyanyedi K****i@h****m 15
tc360950 t****0@g****m 14
hardik h****o@g****m 13
Raif Olson r****4@d****u 13
Eric Criteser c****2@g****m 12
Grzegorz Klimaszewski 1****w 12
Levi Vasconcelos l****s@p****t 12
Ahmad Huzail Khan 1****l 11
Alex Norell a****l@r****m 11
Rajarshi Misra 7****a 11
Soham k****m@g****m 10
Brad Dwyer b****d@r****m 10
rev u****9@o****m 9
dbroboflow d****s@r****m 9
and 78 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 421
  • Total pull requests: 1,180
  • Average time to close issues: 26 days
  • Average time to close pull requests: 11 days
  • Total issue authors: 246
  • Total pull request authors: 158
  • Average comments per issue: 4.94
  • Average comments per pull request: 1.95
  • Merged pull requests: 913
  • Bot issues: 1
  • Bot pull requests: 418
Past Year
  • Issues: 70
  • Pull requests: 371
  • Average time to close issues: 10 days
  • Average time to close pull requests: 6 days
  • Issue authors: 50
  • Pull request authors: 58
  • Average comments per issue: 2.64
  • Average comments per pull request: 1.13
  • Merged pull requests: 257
  • Bot issues: 1
  • Bot pull requests: 155
Top Authors
Issue Authors
  • SkalskiP (55)
  • LinasKo (20)
  • hardikdava (9)
  • Rasantis (8)
  • xaristeidou (7)
  • yeongnamtan (6)
  • patel-zeel (6)
  • dearMOMO (5)
  • YoungjaeDev (5)
  • marcospgp (5)
  • capjamesg (5)
  • dependabot[bot] (4)
  • DreamerYinYu (4)
  • Bhavay-2001 (4)
  • robmarkcole (4)
Pull Request Authors
  • dependabot[bot] (550)
  • onuralpszr (220)
  • SkalskiP (203)
  • LinasKo (148)
  • pre-commit-ci[bot] (126)
  • capjamesg (45)
  • hardikdava (26)
  • rolson24 (20)
  • Kadermiyanyedi (19)
  • Bhavay-2001 (18)
  • soumik12345 (15)
  • AdonaiVera (14)
  • xaristeidou (13)
  • NickHerrig (10)
  • swyxio (10)
Top Labels
Issue Labels
question (150) enhancement (129) bug (112) good first issue (26) hacktoberfest (24) api:annotator (17) Q1.2024 (14) version 0.14.0 (9) help wanted (8) api:detection (8) documentation (7) Q2.2024 (6) api:tracker (4) version: 0.13.0 (4) dependencies (4) python (4) api:keypoints (3) api: linezone (3) planning (3) api:polygonzone (2) version: 0.15.0 (2) version: 0.12.0 (2) duplicate (2) version: 0.18.0 (1) version: 0.16.0 (1) api:video (1) api:metrics (1) priority:high (1) api: video (1) api: datasets (1)
Pull Request Labels
dependencies (572) python (514) enhancement (130) bug (101) documentation (100) github_actions (59) api:annotator (48) api:detection (26) hacktoberfest (23) hacktoberfest-accepted (22) doc:sv:notebooks (20) version: 0.16.0 (17) version 0.14.0 (15) version: 0.13.0 (14) api:examples (9) api:security (8) version: 0.15.0 (7) version: 0.18.0 (6) api:datasets (6) api:keypoints (6) version: 0.12.0 (6) api: linezone (6) priority:high (5) api:tests (4) api:polygonzone (4) api:tracker (4) api:utilities (3) Q1.2024 (3) api:metrics (3) pre-commit-updates (3)

Packages

  • Total packages: 2
  • Total downloads:
    • pypi 1,207,029 last-month
    • npm 12 last-month
  • Total docker downloads: 47,788
  • Total dependent packages: 80
    (may contain duplicates)
  • Total dependent repositories: 214
    (may contain duplicates)
  • Total versions: 87
  • Total maintainers: 13
pypi.org: supervision

A set of easy-to-use utils that will come in handy in any Computer Vision project

  • Versions: 85
  • Dependent Packages: 80
  • Dependent Repositories: 214
  • Downloads: 1,207,029 Last month
  • Docker Downloads: 41,476
Rankings
Dependent packages count: 0.3%
Stargazers count: 0.4%
Downloads: 0.7%
Dependent repos count: 1.0%
Average: 1.5%
Forks count: 2.8%
Docker downloads count: 3.6%
Maintainers (2)
Last synced: 6 months ago
npmjs.org: supervision

We write your reusable computer vision tools. 💜

  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 12 Last month
  • Docker Downloads: 6,312
Rankings
Docker downloads count: 0.6%
Dependent repos count: 18.8%
Average: 31.1%
Dependent packages count: 46.0%
Downloads: 59.2%
Last synced: 6 months ago

Dependencies

.github/workflows/docs.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
.github/workflows/publish.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v2 composite
.github/workflows/test.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v2 composite
.github/workflows/welcome.yml actions
  • actions/first-interaction v1.1.1 composite
setup.py pypi
  • matplotlib *
  • numpy >=1.20.0
  • opencv-python *
  • pyyaml *