Science Score: 54.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
✓Committers with academic emails
4 of 108 committers (3.7%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (13.6%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
We write your reusable computer vision tools. 💜
Basic Info
- Host: GitHub
- Owner: roboflow
- License: mit
- Language: Python
- Default Branch: develop
- Homepage: https://supervision.roboflow.com
- Size: 2.45 GB
Statistics
- Stars: 34,439
- Watchers: 213
- Forks: 2,791
- Open Issues: 129
- Releases: 33
Topics
Metadata Files
README.md
[notebooks](https://github.com/roboflow/notebooks) | [inference](https://github.com/roboflow/inference) | [autodistill](https://github.com/autodistill/autodistill) | [maestro](https://github.com/roboflow/multimodal-maestro)
[](https://badge.fury.io/py/supervision) [](https://pypistats.org/packages/supervision) [](https://snyk.io/advisor/python/supervision) [](https://github.com/roboflow/supervision/blob/main/LICENSE.md) [](https://badge.fury.io/py/supervision) [](https://colab.research.google.com/github/roboflow/supervision/blob/main/demo.ipynb) [](https://huggingface.co/spaces/Roboflow/Annotators) [](https://discord.gg/GbfgXGJ8Bk) [](https://squidfunk.github.io/mkdocs-material/)
👋 hello
We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us! 🤝
💻 install
Pip install the supervision package in a Python>=3.9 environment.
bash
pip install supervision
Read more about conda, mamba, and installing from source in our guide.
🔥 quickstart
models
Supervision was designed to be model agnostic. Just plug in any classification, detection, or segmentation model. For your convenience, we have created connectors for the most popular libraries like Ultralytics, Transformers, or MMDetection.
```python import cv2 import supervision as sv from ultralytics import YOLO
image = cv2.imread(...) model = YOLO("yolov8s.pt") result = model(image)[0] detections = sv.Detections.from_ultralytics(result)
len(detections)
5
```
👉 more model connectors
- inference Running with [Inference](https://github.com/roboflow/inference) requires a [Roboflow API KEY](https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key). ```python import cv2 import supervision as sv from inference import get_model image = cv2.imread(...) model = get_model(model_id="yolov8s-640", api_key=annotators
Supervision offers a wide range of highly customizable annotators, allowing you to compose the perfect visualization for your use case.
```python import cv2 import supervision as sv
image = cv2.imread(...) detections = sv.Detections(...)
boxannotator = sv.BoxAnnotator() annotatedframe = box_annotator.annotate( scene=image.copy(), detections=detections) ```
https://github.com/roboflow/supervision/assets/26109316/691e219c-0565-4403-9218-ab5644f39bce
datasets
Supervision provides a set of utils that allow you to load, split, merge, and save datasets in one of the supported formats.
```python import supervision as sv from roboflow import Roboflow
project = Roboflow().workspace(
ds = sv.DetectionDataset.fromcoco( imagesdirectorypath=f"{dataset.location}/train", annotationspath=f"{dataset.location}/train/_annotations.coco.json", )
path, image, annotation = ds[0] # loads image on demand
for path, image, annotation in ds: # loads image on demand ```
👉 more dataset utils
- load ```python dataset = sv.DetectionDataset.from_yolo( images_directory_path=..., annotations_directory_path=..., data_yaml_path=... ) dataset = sv.DetectionDataset.from_pascal_voc( images_directory_path=..., annotations_directory_path=... ) dataset = sv.DetectionDataset.from_coco( images_directory_path=..., annotations_path=... ) ``` - split ```python train_dataset, test_dataset = dataset.split(split_ratio=0.7) test_dataset, valid_dataset = test_dataset.split(split_ratio=0.5) len(train_dataset), len(test_dataset), len(valid_dataset) # (700, 150, 150) ``` - merge ```python ds_1 = sv.DetectionDataset(...) len(ds_1) # 100 ds_1.classes # ['dog', 'person'] ds_2 = sv.DetectionDataset(...) len(ds_2) # 200 ds_2.classes # ['cat'] ds_merged = sv.DetectionDataset.merge([ds_1, ds_2]) len(ds_merged) # 300 ds_merged.classes # ['cat', 'dog', 'person'] ``` - save ```python dataset.as_yolo( images_directory_path=..., annotations_directory_path=..., data_yaml_path=... ) dataset.as_pascal_voc( images_directory_path=..., annotations_directory_path=... ) dataset.as_coco( images_directory_path=..., annotations_path=... ) ``` - convert ```python sv.DetectionDataset.from_yolo( images_directory_path=..., annotations_directory_path=..., data_yaml_path=... ).as_pascal_voc( images_directory_path=..., annotations_directory_path=... ) ```🎬 tutorials
Want to learn how to use Supervision? Explore our how-to guides, end-to-end examples, cheatsheet, and cookbooks!
Dwell Time Analysis with Computer Vision | Real-Time Stream Processing
Learn how to use computer vision to analyze wait times and optimize processes. This tutorial covers object detection, tracking, and calculating time spent in designated zones. Use these techniques to improve customer experience in retail, traffic management, or other scenarios.
Speed Estimation & Vehicle Tracking | Computer Vision | Open Source
Learn how to track and estimate the speed of vehicles using YOLO, ByteTrack, and Roboflow Inference. This comprehensive tutorial covers object detection, multi-object tracking, filtering detections, perspective transformation, speed estimation, visualization improvements, and more. ## 💜 built with supervision Did you build something cool using supervision? [Let us know!](https://github.com/roboflow/supervision/discussions/categories/built-with-supervision) https://user-images.githubusercontent.com/26109316/207858600-ee862b22-0353-440b-ad85-caa0c4777904.mp4 https://github.com/roboflow/supervision/assets/26109316/c9436828-9fbf-4c25-ae8c-60e9c81b3900 https://github.com/roboflow/supervision/assets/26109316/3ac6982f-4943-4108-9b7f-51787ef1a69f ## 📚 documentation Visit our [documentation](https://roboflow.github.io/supervision) page to learn how supervision can help you build computer vision applications faster and more reliably. ## 🏆 contribution We love your input! Please see our [contributing guide](https://github.com/roboflow/supervision/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!
Owner
- Name: Roboflow
- Login: roboflow
- Kind: organization
- Email: hello@roboflow.com
- Location: United States of America
- Website: https://roboflow.com
- Twitter: roboflow
- Repositories: 142
- Profile: https://github.com/roboflow
Citation (CITATION.cff)
# This CITATION.cff file was generated with cffinit.
# Visit https://bit.ly/cffinit to generate yours today!
cff-version: 1.2.0
title: Supervision
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Roboflow
email: support@roboflow.com
repository-code: 'https://github.com/roboflow/supervision'
url: 'https://roboflow.github.io/supervision/'
abstract: >-
supervision features a range of utilities for use in
computer vision projects, from detections processing and
filtering to confusion matrix calculation.
keywords:
- computer vision
- image processing
- video processing
license: MIT
Committers
Last synced: 10 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| SkalskiP | p****2@g****m | 705 |
| pre-commit-ci[bot] | 6****] | 472 |
| Onuralp SEZER | t****r@g****m | 316 |
| dependabot[bot] | 4****] | 294 |
| LinasKo | l****s@g****m | 277 |
| James Gallagher | j****g@j****g | 99 |
| hd | h****a@g****m | 93 |
| Linas Kondrackis | l****v@s****m | 80 |
| kirilllzaitsev | k****8@g****m | 73 |
| Christoforos Aristeidou | a****s@g****m | 41 |
| Mayank Agarwal | m****2@g****m | 33 |
| magda skoczen | m****o@o****l | 26 |
| Bhavay Malhotra | r****1@g****m | 25 |
| Jeslin P James | j****7@g****m | 21 |
| Nick Herrig | n****g@g****m | 20 |
| Adonai Vera | 4****a | 18 |
| Kader Miyanyedi | K****i@h****m | 15 |
| tc360950 | t****0@g****m | 14 |
| hardik | h****o@g****m | 13 |
| Raif Olson | r****4@d****u | 13 |
| Eric Criteser | c****2@g****m | 12 |
| Grzegorz Klimaszewski | 1****w | 12 |
| Levi Vasconcelos | l****s@p****t | 12 |
| Ahmad Huzail Khan | 1****l | 11 |
| Alex Norell | a****l@r****m | 11 |
| Rajarshi Misra | 7****a | 11 |
| Soham | k****m@g****m | 10 |
| Brad Dwyer | b****d@r****m | 10 |
| rev | u****9@o****m | 9 |
| dbroboflow | d****s@r****m | 9 |
| and 78 more... | ||
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 421
- Total pull requests: 1,180
- Average time to close issues: 26 days
- Average time to close pull requests: 11 days
- Total issue authors: 246
- Total pull request authors: 158
- Average comments per issue: 4.94
- Average comments per pull request: 1.95
- Merged pull requests: 913
- Bot issues: 1
- Bot pull requests: 418
Past Year
- Issues: 70
- Pull requests: 371
- Average time to close issues: 10 days
- Average time to close pull requests: 6 days
- Issue authors: 50
- Pull request authors: 58
- Average comments per issue: 2.64
- Average comments per pull request: 1.13
- Merged pull requests: 257
- Bot issues: 1
- Bot pull requests: 155
Top Authors
Issue Authors
- SkalskiP (55)
- LinasKo (20)
- hardikdava (9)
- Rasantis (8)
- xaristeidou (7)
- yeongnamtan (6)
- patel-zeel (6)
- dearMOMO (5)
- YoungjaeDev (5)
- marcospgp (5)
- capjamesg (5)
- dependabot[bot] (4)
- DreamerYinYu (4)
- Bhavay-2001 (4)
- robmarkcole (4)
Pull Request Authors
- dependabot[bot] (550)
- onuralpszr (220)
- SkalskiP (203)
- LinasKo (148)
- pre-commit-ci[bot] (126)
- capjamesg (45)
- hardikdava (26)
- rolson24 (20)
- Kadermiyanyedi (19)
- Bhavay-2001 (18)
- soumik12345 (15)
- AdonaiVera (14)
- xaristeidou (13)
- NickHerrig (10)
- swyxio (10)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 2
-
Total downloads:
- pypi 1,207,029 last-month
- npm 12 last-month
- Total docker downloads: 47,788
-
Total dependent packages: 80
(may contain duplicates) -
Total dependent repositories: 214
(may contain duplicates) - Total versions: 87
- Total maintainers: 13
pypi.org: supervision
A set of easy-to-use utils that will come in handy in any Computer Vision project
- Homepage: https://github.com/roboflow/supervision
- Documentation: https://supervision.roboflow.com/latest/
- License: MIT
-
Latest release: 0.26.1
published 7 months ago
Rankings
npmjs.org: supervision
We write your reusable computer vision tools. 💜
- Homepage: https://github.com/roboflow/supervision#readme
- License: MIT
-
Latest release: 0.0.9000
published about 2 years ago
Rankings
Maintainers (11)
Dependencies
- actions/checkout v2 composite
- actions/setup-python v2 composite
- actions/checkout v3 composite
- actions/setup-python v2 composite
- actions/checkout v3 composite
- actions/setup-python v2 composite
- actions/first-interaction v1.1.1 composite
- matplotlib *
- numpy >=1.20.0
- opencv-python *
- pyyaml *