pytorch

Tensors and Dynamic neural networks in Python with strong GPU acceleration

https://github.com/pytorch/pytorch

Science Score: 36.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
    175 of 4651 committers (3.8%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (13.7%) to scientific vocabulary

Keywords

autograd deep-learning gpu machine-learning neural-network numpy python tensor

Keywords from Contributors

transformer distributed deep-neural-networks audio jax pretrained-models speech-recognition deepseek gemma qwen
Last synced: 6 months ago · JSON representation

Repository

Tensors and Dynamic neural networks in Python with strong GPU acceleration

Basic Info
  • Host: GitHub
  • Owner: pytorch
  • License: other
  • Language: Python
  • Default Branch: main
  • Homepage: https://pytorch.org
  • Size: 1.03 GB
Statistics
  • Stars: 92,871
  • Watchers: 1,791
  • Forks: 25,154
  • Open Issues: 17,043
  • Releases: 0
Topics
autograd deep-learning gpu machine-learning neural-network numpy python tensor
Created over 9 years ago · Last pushed 6 months ago
Metadata Files
Readme Contributing License Code of conduct Citation Codeowners Security Notice Agents

README.md

PyTorch Logo


PyTorch is a Python package that provides two high-level features: - Tensor computation (like NumPy) with strong GPU acceleration - Deep neural networks built on a tape-based autograd system

You can reuse your favorite Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.

Our trunk health (Continuous Integration signals) can be found at hud.pytorch.org.

More About PyTorch

Learn the basics of PyTorch

At a granular level, PyTorch is a library that consists of the following components:

| Component | Description | | ---- | --- | | torch | A Tensor library like NumPy, with strong GPU support | | torch.autograd | A tape-based automatic differentiation library that supports all differentiable Tensor operations in torch | | torch.jit | A compilation stack (TorchScript) to create serializable and optimizable models from PyTorch code | | torch.nn | A neural networks library deeply integrated with autograd designed for maximum flexibility | | torch.multiprocessing | Python multiprocessing, but with magical memory sharing of torch Tensors across processes. Useful for data loading and Hogwild training | | torch.utils | DataLoader and other utility functions for convenience |

Usually, PyTorch is used either as:

  • A replacement for NumPy to use the power of GPUs.
  • A deep learning research platform that provides maximum flexibility and speed.

Elaborating Further:

A GPU-Ready Tensor Library

If you use NumPy, then you have used Tensors (a.k.a. ndarray).

Tensor illustration

PyTorch provides Tensors that can live either on the CPU or the GPU and accelerates the computation by a huge amount.

We provide a wide variety of tensor routines to accelerate and fit your scientific computation needs such as slicing, indexing, mathematical operations, linear algebra, reductions. And they are fast!

Dynamic Neural Networks: Tape-Based Autograd

PyTorch has a unique way of building neural networks: using and replaying a tape recorder.

Most frameworks such as TensorFlow, Theano, Caffe, and CNTK have a static view of the world. One has to build a neural network and reuse the same structure again and again. Changing the way the network behaves means that one has to start from scratch.

With PyTorch, we use a technique called reverse-mode auto-differentiation, which allows you to change the way your network behaves arbitrarily with zero lag or overhead. Our inspiration comes from several research papers on this topic, as well as current and past work such as torch-autograd, autograd, Chainer, etc.

While this technique is not unique to PyTorch, it's one of the fastest implementations of it to date. You get the best of speed and flexibility for your crazy research.

Dynamic graph

Python First

PyTorch is not a Python binding into a monolithic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use NumPy / SciPy / scikit-learn etc. You can write your new neural network layers in Python itself, using your favorite libraries and use packages such as Cython and Numba. Our goal is to not reinvent the wheel where appropriate.

Imperative Experiences

PyTorch is designed to be intuitive, linear in thought, and easy to use. When you execute a line of code, it gets executed. There isn't an asynchronous view of the world. When you drop into a debugger or receive error messages and stack traces, understanding them is straightforward. The stack trace points to exactly where your code was defined. We hope you never spend hours debugging your code because of bad stack traces or asynchronous and opaque execution engines.

Fast and Lean

PyTorch has minimal framework overhead. We integrate acceleration libraries such as Intel MKL and NVIDIA (cuDNN, NCCL) to maximize speed. At the core, its CPU and GPU Tensor and neural network backends are mature and have been tested for years.

Hence, PyTorch is quite fast whether you run small or large neural networks.

The memory usage in PyTorch is extremely efficient compared to Torch or some of the alternatives. We've written custom memory allocators for the GPU to make sure that your deep learning models are maximally memory efficient. This enables you to train bigger deep learning models than before.

Extensions Without Pain

Writing new neural network modules, or interfacing with PyTorch's Tensor API was designed to be straightforward and with minimal abstractions.

You can write new neural network layers in Python using the torch API or your favorite NumPy-based libraries such as SciPy.

If you want to write your layers in C/C++, we provide a convenient extension API that is efficient and with minimal boilerplate. No wrapper code needs to be written. You can see a tutorial here and an example here.

Installation

Binaries

Commands to install binaries via Conda or pip wheels are on our website: https://pytorch.org/get-started/locally/

NVIDIA Jetson Platforms

Python wheels for NVIDIA's Jetson Nano, Jetson TX1/TX2, Jetson Xavier NX/AGX, and Jetson AGX Orin are provided here and the L4T container is published here

They require JetPack 4.2 and above, and @dusty-nv and @ptrblck are maintaining them.

From Source

Prerequisites

If you are installing from source, you will need: - Python 3.9 or later - A compiler that fully supports C++17, such as clang or gcc (gcc 9.4.0 or newer is required, on Linux) - Visual Studio or Visual Studio Build Tool (Windows only)

* PyTorch CI uses Visual C++ BuildTools, which come with Visual Studio Enterprise, Professional, or Community Editions. You can also install the build tools from https://visualstudio.microsoft.com/visual-cpp-build-tools/. The build tools do not come with Visual Studio Code by default.

An example of environment setup is shown below:

  • Linux:

bash $ source <CONDA_INSTALL_DIR>/bin/activate $ conda create -y -n <CONDA_NAME> $ conda activate <CONDA_NAME>

  • Windows:

bash $ source <CONDA_INSTALL_DIR>\Scripts\activate.bat $ conda create -y -n <CONDA_NAME> $ conda activate <CONDA_NAME> $ call "C:\Program Files\Microsoft Visual Studio\<VERSION>\Community\VC\Auxiliary\Build\vcvarsall.bat" x64

A conda environment is not required. You can also do a PyTorch build in a standard virtual environment, e.g., created with tools like uv, provided your system has installed all the necessary dependencies unavailable as pip packages (e.g., CUDA, MKL.)

NVIDIA CUDA Support

If you want to compile with CUDA support, select a supported version of CUDA from our support matrix, then install the following: - NVIDIA CUDA - NVIDIA cuDNN v8.5 or above - Compiler compatible with CUDA

Note: You could refer to the cuDNN Support Matrix for cuDNN versions with the various supported CUDA, CUDA driver, and NVIDIA hardware.

If you want to disable CUDA support, export the environment variable USE_CUDA=0. Other potentially useful environment variables may be found in setup.py. If CUDA is installed in a non-standard location, set PATH so that the nvcc you want to use can be found (e.g., export PATH=/usr/local/cuda-12.8/bin:$PATH).

If you are building for NVIDIA's Jetson platforms (Jetson Nano, TX1, TX2, AGX Xavier), Instructions to install PyTorch for Jetson Nano are available here

AMD ROCm Support

If you want to compile with ROCm support, install - AMD ROCm 4.0 and above installation - ROCm is currently supported only for Linux systems.

By default the build system expects ROCm to be installed in /opt/rocm. If ROCm is installed in a different directory, the ROCM_PATH environment variable must be set to the ROCm installation directory. The build system automatically detects the AMD GPU architecture. Optionally, the AMD GPU architecture can be explicitly set with the PYTORCH_ROCM_ARCH environment variable AMD GPU architecture

If you want to disable ROCm support, export the environment variable USE_ROCM=0. Other potentially useful environment variables may be found in setup.py.

Intel GPU Support

If you want to compile with Intel GPU support, follow these - PyTorch Prerequisites for Intel GPUs instructions. - Intel GPU is supported for Linux and Windows.

If you want to disable Intel GPU support, export the environment variable USE_XPU=0. Other potentially useful environment variables may be found in setup.py.

Get the PyTorch Source

```bash git clone https://github.com/pytorch/pytorch cd pytorch

if you are updating an existing checkout

git submodule sync git submodule update --init --recursive ```

Install Dependencies

Common

```bash

Run this command from the PyTorch directory after cloning the source code using the Get the PyTorch Source section above

pip install --group dev ```

On Linux

```bash pip install mkl-static mkl-include

CUDA only: Add LAPACK support for the GPU if needed

magma installation: run with active conda environment. specify CUDA version to install

.ci/docker/common/installmagmaconda.sh 12.4

(optional) If using torch.compile with inductor/triton, install the matching version of triton

Run from the pytorch directory after cloning

For Intel GPU support, please explicitly export USE_XPU=1 before running command.

make triton ```

On MacOS

```bash

Add this package on intel x86 processor machines only

pip install mkl-static mkl-include

Add these packages if torch.distributed is needed

conda install pkg-config libuv ```

On Windows

```bash pip install mkl-static mkl-include

Add these packages if torch.distributed is needed.

Distributed package support on Windows is a prototype feature and is subject to changes.

conda install -c conda-forge libuv ```

Install PyTorch

On Linux

If you're compiling for AMD ROCm then first run this command:

```bash

Only run this if you're compiling for ROCm

python tools/amdbuild/buildamd.py ```

Install PyTorch

bash export CMAKE_PREFIX_PATH="${CONDA_PREFIX:-'$(dirname $(which conda))/../'}:${CMAKE_PREFIX_PATH}" python -m pip install --no-build-isolation -v -e .

On macOS

bash python -m pip install --no-build-isolation -v -e .

On Windows

If you want to build legacy python code, please refer to Building on legacy code and CUDA

CPU-only builds

In this mode PyTorch computations will run on your CPU, not your GPU.

cmd python -m pip install --no-build-isolation -v -e .

Note on OpenMP: The desired OpenMP implementation is Intel OpenMP (iomp). In order to link against iomp, you'll need to manually download the library and set up the building environment by tweaking CMAKE_INCLUDE_PATH and LIB. The instruction here is an example for setting up both MKL and Intel OpenMP. Without these configurations for CMake, Microsoft Visual C OpenMP runtime (vcomp) will be used.

CUDA based build

In this mode PyTorch computations will leverage your GPU via CUDA for faster number crunching

NVTX is needed to build Pytorch with CUDA. NVTX is a part of CUDA distributive, where it is called "Nsight Compute". To install it onto an already installed CUDA run CUDA installation once again and check the corresponding checkbox. Make sure that CUDA with Nsight Compute is installed after Visual Studio.

Currently, VS 2017 / 2019, and Ninja are supported as the generator of CMake. If ninja.exe is detected in PATH, then Ninja will be used as the default generator, otherwise, it will use VS 2017 / 2019.
If Ninja is selected as the generator, the latest MSVC will get selected as the underlying toolchain.

Additional libraries such as Magma, oneDNN, a.k.a. MKLDNN or DNNL, and Sccache are often needed. Please refer to the installation-helper to install them.

You can refer to the build_pytorch.bat script for some other environment variables configurations

```cmd cmd

:: Set the environment variables after you have downloaded and unzipped the mkl package, :: else CMake would throw an error as Could NOT find OpenMP. set CMAKEINCLUDEPATH={Your directory}\mkl\include set LIB={Your directory}\mkl\lib;%LIB%

:: Read the content in the previous section carefully before you proceed. :: [Optional] If you want to override the underlying toolset used by Ninja and Visual Studio with CUDA, please run the following script block. :: "Visual Studio 2019 Developer Command Prompt" will be run automatically. :: Make sure you have CMake >= 3.12 before you do this when you use the Visual Studio generator. set CMAKEGENERATORTOOLSETVERSION=14.27 set DISTUTILSUSESDK=1 for /f "usebackq tokens=*" %i in ("%ProgramFiles(x86)%\Microsoft Visual Studio\Installer\vswhere.exe" -version [15^,17^) -products * -latest -property installationPath) do call "%i\VC\Auxiliary\Build\vcvarsall.bat" x64 -vcvarsver=%CMAKEGENERATORTOOLSET_VERSION%

:: [Optional] If you want to override the CUDA host compiler set CUDAHOSTCXX=C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.27.29110\bin\HostX64\x64\cl.exe

python -m pip install --no-build-isolation -v -e . ```

Intel GPU builds

In this mode PyTorch with Intel GPU support will be built.

Please make sure the common prerequisites as well as the prerequisites for Intel GPU are properly installed and the environment variables are configured prior to starting the build. For build tool support, Visual Studio 2022 is required.

Then PyTorch can be built with the command:

``cmd :: CMD Commands: :: Set the CMAKE_PREFIX_PATH to help find corresponding packages :: %CONDA_PREFIX% only works afterconda activate custom_env`

if defined CMAKEPREFIXPATH ( set "CMAKEPREFIXPATH=%CONDAPREFIX%\Library;%CMAKEPREFIXPATH%" ) else ( set "CMAKEPREFIXPATH=%CONDAPREFIX%\Library" )

python -m pip install --no-build-isolation -v -e . ```

Adjust Build Options (Optional)

You can adjust the configuration of cmake variables optionally (without building first), by doing the following. For example, adjusting the pre-detected directories for CuDNN or BLAS can be done with such a step.

On Linux

bash export CMAKE_PREFIX_PATH="${CONDA_PREFIX:-'$(dirname $(which conda))/../'}:${CMAKE_PREFIX_PATH}" CMAKE_ONLY=1 python setup.py build ccmake build # or cmake-gui build

On macOS

bash export CMAKE_PREFIX_PATH="${CONDA_PREFIX:-'$(dirname $(which conda))/../'}:${CMAKE_PREFIX_PATH}" MACOSX_DEPLOYMENT_TARGET=11.0 CMAKE_ONLY=1 python setup.py build ccmake build # or cmake-gui build

Docker Image

Using pre-built images

You can also pull a pre-built docker image from Docker Hub and run with docker v19.03+

bash docker run --gpus all --rm -ti --ipc=host pytorch/pytorch:latest

Please note that PyTorch uses shared memory to share data between processes, so if torch multiprocessing is used (e.g. for multithreaded data loaders) the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host or --shm-size command line options to nvidia-docker run.

Building the image yourself

NOTE: Must be built with a docker version > 18.06

The Dockerfile is supplied to build images with CUDA 11.1 support and cuDNN v8. You can pass PYTHON_VERSION=x.y make variable to specify which Python version is to be used by Miniconda, or leave it unset to use the default.

```bash make -f docker.Makefile

images are tagged as docker.io/${yourdockerusername}/pytorch

```

You can also pass the CMAKE_VARS="..." environment variable to specify additional CMake variables to be passed to CMake during the build. See setup.py for the list of available variables.

bash make -f docker.Makefile

Building the Documentation

To build documentation in various formats, you will need Sphinx and the pytorchsphinxtheme2.

Before you build the documentation locally, ensure torch is installed in your environment. For small fixes, you can install the nightly version as described in Getting Started.

For more complex fixes, such as adding a new module and docstrings for the new module, you might need to install torch from source. See Docstring Guidelines for docstring conventions.

bash cd docs/ pip install -r requirements.txt make html make serve

Run make to get a list of all available output formats.

If you get a katex error run npm install katex. If it persists, try npm install -g katex

[!NOTE] If you installed nodejs with a different package manager (e.g., conda) then npm will probably install a version of katex that is not compatible with your version of nodejs and doc builds will fail. A combination of versions that is known to work is node@6.13.1 and katex@0.13.18. To install the latter with npm you can run npm install -g katex@0.13.18

[!NOTE] If you see a numpy incompatibility error, run: pip install 'numpy<2'

When you make changes to the dependencies run by CI, edit the .ci/docker/requirements-docs.txt file.

Building a PDF

To compile a PDF of all PyTorch documentation, ensure you have texlive and LaTeX installed. On macOS, you can install them using:

brew install --cask mactex

To create the PDF:

  1. Run:

make latexpdf

This will generate the necessary files in the build/latex directory.

  1. Navigate to this directory and execute:

make LATEXOPTS="-interaction=nonstopmode"

This will produce a pytorch.pdf with the desired content. Run this command one more time so that it generates the correct table of contents and index.

[!NOTE] To view the Table of Contents, switch to the Table of Contents view in your PDF viewer.

Previous Versions

Installation instructions and binaries for previous PyTorch versions may be found on our website.

Getting Started

Three pointers to get you started: - Tutorials: get you started with understanding and using PyTorch - Examples: easy to understand PyTorch code across all domains - The API Reference - Glossary

Resources

Communication

  • Forums: Discuss implementations, research, etc. https://discuss.pytorch.org
  • GitHub Issues: Bug reports, feature requests, install issues, RFCs, thoughts, etc.
  • Slack: The PyTorch Slack hosts a primary audience of moderate to experienced PyTorch users and developers for general chat, online discussions, collaboration, etc. If you are a beginner looking for help, the primary medium is PyTorch Forums. If you need a slack invite, please fill this form: https://goo.gl/forms/PP1AGvNHpSaJP8to1
  • Newsletter: No-noise, a one-way email newsletter with important announcements about PyTorch. You can sign-up here: https://eepurl.com/cbG0rv
  • Facebook Page: Important announcements about PyTorch. https://www.facebook.com/pytorch
  • For brand guidelines, please visit our website at pytorch.org

Releases and Contributing

Typically, PyTorch has three minor releases a year. Please let us know if you encounter a bug by filing an issue.

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion.

If you plan to contribute new features, utility functions, or extensions to the core, please first open an issue and discuss the feature with us. Sending a PR without discussion might end up resulting in a rejected PR because we might be taking the core in a different direction than you might be aware of.

To learn more about making a contribution to Pytorch, please see our Contribution page. For more information about PyTorch releases, see Release page.

The Team

PyTorch is a community-driven project with several skillful engineers and researchers contributing to it.

PyTorch is currently maintained by Soumith Chintala, Gregory Chanan, Dmytro Dzhulgakov, Edward Yang, Alban Desmaison, Piotr Bialecki and Nikita Shulga with major contributions coming from hundreds of talented individuals in various forms and means. A non-exhaustive but growing list needs to mention: Trevor Killeen, Sasank Chilamkurthy, Sergey Zagoruyko, Adam Lerer, Francisco Massa, Alykhan Tejani, Luca Antiga, Alban Desmaison, Andreas Koepf, James Bradbury, Zeming Lin, Yuandong Tian, Guillaume Lample, Marat Dukhan, Natalia Gimelshein, Christian Sarofeen, Martin Raison, Edward Yang, Zachary Devito. <!-- codespell:ignore -->

Note: This project is unrelated to hughperkins/pytorch with the same name. Hugh is a valuable contributor to the Torch community and has helped with many things Torch and PyTorch.

License

PyTorch has a BSD-style license, as found in the LICENSE file.

Owner

  • Name: pytorch
  • Login: pytorch
  • Kind: organization
  • Location: where the eigens are valued

Committers

Last synced: 10 months ago

All Time
  • Total Commits: 86,780
  • Total Committers: 4,651
  • Avg Commits per committer: 18.658
  • Development Distribution Score (DDS): 0.962
Past Year
  • Commits: 14,764
  • Committers: 996
  • Avg Commits per committer: 14.823
  • Development Distribution Score (DDS): 0.909
Top Committers
Name Email Commits
PyTorch MergeBot p****t 3,285
Edward Yang e****g@f****m 3,281
Nikita Shulga n****a@f****m 2,515
Richard Zou z****9@g****m 1,782
Jerry Zhang j****h@f****m 1,216
Gregory Chanan g****n@f****m 1,081
Peter Bell p****0@l****k 892
Adam Paszke a****e@g****m 870
cyy c****r@o****m 853
Michael Suo s****o@f****m 809
Horace He c****i@f****m 751
Soumith Chintala s****h@g****m 741
Zachary DeVito z****o@f****m 730
Animesh Jain a****n@u****u 713
Rohan Varma r****1@f****m 684
Jane Xu j****x@f****m 644
albanD d****n@g****m 601
Scott Wolchok s****k@f****m 592
Sam Gross c****y@g****m 586
Wanchao Liang w****l 586
James Reed j****d@f****m 586
Jason Ansel j****l@m****m 572
Sebastian Messmer m****r@f****m 562
Bin Bao b****o@m****m 556
Andrew Gu a****u@f****m 549
Huy Do h****n@g****m 527
kshitij12345 k****r@g****m 508
Vasiliy Kuznetsov v****y@f****m 504
Brian Hirsh h****r@f****m 495
Yangqing Jia j****4@g****m 481
and 4,621 more...
Committer Domains (Top 20 + Academic)
fb.com: 1086 meta.com: 382 intel.com: 113 qq.com: 68 microsoft.com: 46 amd.com: 46 nvidia.com: 44 google.com: 37 163.com: 36 habana.ai: 28 amazon.com: 19 arm.com: 18 us.ibm.com: 14 graphcore.ai: 12 yandex.ru: 11 oculus.com: 11 twitter.com: 10 umich.edu: 9 quansight.com: 8 alibaba-inc.com: 8 cornell.edu: 6 nyu.edu: 5 berkeley.edu: 5 cs.cmu.edu: 4 gatech.edu: 4 columbia.edu: 3 pku.edu.cn: 3 vt.edu: 3 yale.edu: 3 stanford.edu: 3 illinois.edu: 3 iith.ac.in: 2 uwaterloo.ca: 2 ntu.edu.tw: 2 mail.utoronto.ca: 2 andrew.cmu.edu: 2 tum.de: 2 case.edu: 2 mit.edu: 2 ornl.gov: 2 mails.tsinghua.edu.cn: 2 kaust.edu.sa: 2 rit.edu: 2 shanghaitech.edu.cn: 2 utexas.edu: 2 duke.edu: 2 uw.edu: 2 zju.edu.cn: 2 biologie.hu-berlin.de: 1 vsi.cs.uni-frankfurt.de: 1 dyn1217-137.wlan.ic.ac.uk: 1 eng.cam.ac.uk: 1 iastate.edu: 1 scclin016.flatironinstitute.org: 1 indiana.edu: 1 uci.edu: 1 smail.iitpkd.ac.in: 1 polytechnique.edu: 1 wustl.edu: 1 purdue.edu: 1 bu.edu: 1 campus.tu-berlin.de: 1 tu-dortmund.de: 1 llnl.gov: 1 klis.tsukuba.ac.jp: 1 di.ku.dk: 1 cs.berkeley.edu: 1 jhu.edu: 1 in.tum.de: 1 tu-dresden.de: 1 mail.bnu.edu.cn: 1 cam.ac.uk: 1 mrc-lmb.cam.ac.uk: 1 ttic.edu: 1 rutgers.edu: 1 ma.iitr.ac.in: 1 dlr.de: 1 fh-linz.at: 1 wpi.edu: 1 mail.uni-paderborn.de: 1 dickinson.edu: 1 cs.washington.edu: 1 itbhu.ac.in: 1 college.harvard.edu: 1 seecs.edu.pk: 1 fci.helwan.edu.eg: 1 logos.t.u-tokyo.ac.jp: 1 ncsu.edu: 1 soton.ac.uk: 1 cs.ucl.ac.uk: 1 ku.edu.tr: 1 oregonstate.edu: 1 nottingham.ac.uk: 1 ucla.edu: 1 cs.toronto.edu: 1 pnnl.gov: 1 cse.iitm.ac.in: 1 unal.edu.co: 1 udo.edu: 1 iis.ee.ethz.ch: 1 jcu.edu.au: 1 tju.edu.cn: 1 mail.scut.edu.cn: 1 cs.hmc.edu: 1 cfa.harvard.edu: 1 mib.uni-stuttgart.de: 1 appstate.edu: 1 seas.upenn.edu: 1 ucsc.edu: 1 iitgn.ac.in: 1 student.unimelb.edu.au: 1 iu.edu: 1 ista.ac.at: 1 ischool.berkeley.edu: 1 msu.edu: 1 cern.ch: 1 seas.harvard.edu: 1 vitstudent.ac.in: 1 weizmann.ac.il: 1 is.s.u-tokyo.ac.jp: 1 cmu.edu: 1 ll.mit.edu: 1 edu.uwaterloo.ca: 1 informatik.uni-wuerzburg.de: 1 dartmouth.edu: 1 anderson.edu: 1 ic.ac.uk: 1 e.ntu.edu.sg: 1 wisc.edu: 1 g.ecc.u-tokyo.ac.jp: 1 whu.edu.cn: 1 mail.ustc.edu.cn: 1 g.skku.edu: 1 email.szu.edu.cn: 1 dfki.de: 1 vols.utk.edu: 1 buaa.edu.cn: 1

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 16,090
  • Total pull requests: 43,339
  • Average time to close issues: 5 months
  • Average time to close pull requests: 18 days
  • Total issue authors: 4,766
  • Total pull request authors: 2,574
  • Average comments per issue: 3.0
  • Average comments per pull request: 5.54
  • Merged pull requests: 541
  • Bot issues: 3,066
  • Bot pull requests: 143
Past Year
  • Issues: 7,662
  • Pull requests: 22,140
  • Average time to close issues: 16 days
  • Average time to close pull requests: 11 days
  • Issue authors: 2,217
  • Pull request authors: 1,525
  • Average comments per issue: 1.84
  • Average comments per pull request: 5.27
  • Merged pull requests: 263
  • Bot issues: 1,910
  • Bot pull requests: 98
Top Authors
Issue Authors
  • pytorch-bot[bot] (3,066)
  • ezyang (383)
  • zou3519 (353)
  • malfet (189)
  • atalman (174)
  • hyperkai (163)
  • huydhn (146)
  • bdhirsh (116)
  • zxd1997066 (113)
  • etaf (112)
  • anijain2305 (88)
  • justinchuby (88)
  • Chillee (84)
  • jithunnair-amd (78)
  • clee2000 (75)
Pull Request Authors
  • malfet (1,310)
  • cyyever (1,240)
  • anijain2305 (1,024)
  • ezyang (993)
  • bobrenjc93 (726)
  • zou3519 (615)
  • XuehaiPan (603)
  • jansel (565)
  • desertfire (545)
  • atalman (476)
  • clee2000 (475)
  • angelayi (466)
  • mlazos (435)
  • laithsakka (420)
  • ydwu4 (412)
Top Labels
Issue Labels
triaged (8,293) oncall: pt2 (3,956) skipped (3,399) module: flaky-tests (3,117) module: inductor (1,573) module: dynamo (982) oncall: distributed (797) module: rocm (665) high priority (589) module: onnx (501) module: functorch (466) module: cuda (419) module: dynamic shapes (346) module: ci (340) oncall: export (335) actionable (323) module: macos (303) module: pt2-dispatcher (287) module: docs (279) module: mps (273) module: nn (263) triage review (238) module: fsdp (229) needs reproduction (224) oncall: cpu inductor (219) module: build (193) module: nestedtensor (182) module: xpu (179) module: windows (177) module: regression (171)
Pull Request Labels
ciflow/trunk (21,412) topic: not user facing (19,982) Merged (17,776) ciflow/inductor (16,308) merging (14,901) open source (13,593) module: inductor (9,229) module: dynamo (7,165) fb-exported (4,737) triaged (4,657) oncall: distributed (4,488) Stale (3,109) Reverted (2,330) module: cpu (1,732) release notes: fx (1,410) ci-no-td (1,360) release notes: distributed (c10d) (1,326) ciflow/mps (1,233) release notes: quantization (1,140) ciflow/rocm (1,073) module: rocm (944) ciflow/periodic (927) keep-going (901) release notes: dynamo (839) ciflow/xpu (808) topic: bug fixes (788) release notes: inductor (774) release notes: mps (719) fx (672) release notes: releng (650)

Packages

  • Total packages: 20
  • Total downloads:
    • pypi 62,882,465 last-month
  • Total docker downloads: 48,721,822
  • Total dependent packages: 7,260
    (may contain duplicates)
  • Total dependent repositories: 98,290
    (may contain duplicates)
  • Total versions: 403
  • Total maintainers: 10
  • Total advisories: 7
pypi.org: torch

Tensors and Dynamic neural networks in Python with strong GPU acceleration

  • Versions: 45
  • Dependent Packages: 6,944
  • Dependent Repositories: 92,053
  • Downloads: 62,881,452 Last month
  • Docker Downloads: 48,721,822
Rankings
Dependent packages count: 0.0%
Dependent repos count: 0.0%
Stargazers count: 0.0%
Forks count: 0.0%
Downloads: 0.1%
Average: 0.1%
Docker downloads count: 0.5%
Last synced: 6 months ago
conda-forge.org: pytorch

PyTorch is a Python package that provides two high-level features: - Tensor computation (like NumPy) with strong GPU acceleration - Deep neural networks built on a tape-based autograd system You can reuse your favorite Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.

  • Homepage: https://pytorch.org/
  • License: BSD-3-Clause
  • Latest release: 1.12.1
    published over 3 years ago
  • Versions: 11
  • Dependent Packages: 254
  • Dependent Repositories: 2,722
Rankings
Dependent repos count: 0.2%
Average: 0.2%
Dependent packages count: 0.3%
Last synced: 6 months ago
anaconda.org: pytorch

PyTorch is a Python package that provides two high-level features: - Tensor computation (like NumPy) with strong GPU acceleration - Deep neural networks built on a tape-based autograd system You can reuse your favorite Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.

  • Versions: 24
  • Dependent Packages: 20
  • Dependent Repositories: 2,722
Rankings
Stargazers count: 0.4%
Forks count: 0.5%
Average: 1.0%
Dependent repos count: 1.0%
Dependent packages count: 2.0%
Last synced: 6 months ago
proxy.golang.org: github.com/pytorch/pytorch
  • Versions: 223
  • Dependent Packages: 0
  • Dependent Repositories: 1
Rankings
Forks count: 0.0%
Stargazers count: 0.0%
Average: 3.6%
Dependent repos count: 4.7%
Dependent packages count: 9.6%
Last synced: 9 months ago
pypi.org: pytorch-gpu

torch-gpu

  • Versions: 1
  • Dependent Packages: 2
  • Dependent Repositories: 11
  • Downloads: 960 Last month
Rankings
Stargazers count: 0.0%
Forks count: 0.0%
Average: 3.8%
Dependent repos count: 4.4%
Dependent packages count: 4.8%
Downloads: 9.7%
Maintainers (1)
Last synced: 6 months ago
repo1.maven.org: org.pytorch:pytorch_android_lite

pytorch_android_lite pytorch android api

  • Versions: 9
  • Dependent Packages: 5
  • Dependent Repositories: 48
Rankings
Stargazers count: 0.3%
Forks count: 0.5%
Dependent repos count: 3.1%
Average: 3.9%
Dependent packages count: 11.5%
Last synced: 6 months ago
repo1.maven.org: org.pytorch:pytorch_android

pytorch_android pytorch android api

  • Versions: 12
  • Dependent Packages: 4
  • Dependent Repositories: 287
Rankings
Stargazers count: 0.3%
Forks count: 0.5%
Dependent repos count: 0.9%
Average: 3.9%
Dependent packages count: 13.9%
Last synced: 6 months ago
repo1.maven.org: org.pytorch:pytorch_java_only

pytorch_java_only pytorch java api

  • Versions: 11
  • Dependent Packages: 6
  • Dependent Repositories: 12
Rankings
Stargazers count: 0.3%
Forks count: 0.5%
Average: 4.4%
Dependent repos count: 7.1%
Dependent packages count: 9.7%
Last synced: 6 months ago
conda-forge.org: pytorch-cpu

PyTorch is a Python package that provides two high-level features: - Tensor computation (like NumPy) with strong GPU acceleration - Deep neural networks built on a tape-based autograd system You can reuse your favorite Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.

  • Homepage: https://pytorch.org/
  • License: BSD-3-Clause
  • Latest release: 1.12.1
    published over 3 years ago
  • Versions: 14
  • Dependent Packages: 14
  • Dependent Repositories: 50
Rankings
Dependent packages count: 4.5%
Average: 4.8%
Dependent repos count: 5.0%
Last synced: 6 months ago
repo1.maven.org: org.pytorch:pytorch_android_torchvision

pytorch_android_torchvision

  • Versions: 11
  • Dependent Packages: 2
  • Dependent Repositories: 271
Rankings
Stargazers count: 0.3%
Forks count: 0.5%
Dependent repos count: 0.9%
Average: 6.2%
Dependent packages count: 23.2%
Last synced: 6 months ago
repo1.maven.org: org.pytorch:pytorch_android_torchvision_lite

pytorch_android_torchvision_lite

  • Versions: 8
  • Dependent Packages: 2
  • Dependent Repositories: 26
Rankings
Stargazers count: 0.3%
Forks count: 0.5%
Dependent repos count: 4.6%
Average: 7.2%
Dependent packages count: 23.2%
Last synced: 6 months ago
conda-forge.org: pytorch-gpu

PyTorch is a Python package that provides two high-level features: - Tensor computation (like NumPy) with strong GPU acceleration - Deep neural networks built on a tape-based autograd system You can reuse your favorite Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.

  • Homepage: https://pytorch.org/
  • License: BSD-3-Clause
  • Latest release: 1.12.1
    published over 3 years ago
  • Versions: 11
  • Dependent Packages: 7
  • Dependent Repositories: 18
Rankings
Dependent packages count: 8.0%
Average: 8.2%
Dependent repos count: 8.3%
Last synced: 6 months ago
anaconda.org: pytorch-cpu

PyTorch is a Python package that provides two high-level features: - Tensor computation (like NumPy) with strong GPU acceleration - Deep neural networks built on a tape-based autograd system You can reuse your favorite Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.

  • Versions: 8
  • Dependent Packages: 0
  • Dependent Repositories: 50
Rankings
Stargazers count: 0.2%
Forks count: 0.4%
Average: 19.1%
Dependent repos count: 24.4%
Dependent packages count: 51.2%
Last synced: 6 months ago
anaconda.org: pytorch-gpu

PyTorch is a Python package that provides two high-level features: - Tensor computation (like NumPy) with strong GPU acceleration - Deep neural networks built on a tape-based autograd system You can reuse your favorite Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.

  • Homepage: https://pytorch.org/
  • License: BSD-3-Clause
  • Latest release: 2.5.1
    published 12 months ago
  • Versions: 7
  • Dependent Packages: 0
  • Dependent Repositories: 18
Rankings
Stargazers count: 0.2%
Forks count: 0.4%
Average: 21.2%
Dependent repos count: 33.0%
Dependent packages count: 51.2%
Last synced: 6 months ago
pypi.org: torch-cpp

Tensors and Dynamic neural networks in Python with strong GPU acceleration

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 20 Last month
Rankings
Dependent packages count: 10.6%
Average: 35.3%
Dependent repos count: 60.0%
Maintainers (1)
Last synced: 6 months ago
pypi.org: pytorch-riscv64

Tensors and Dynamic neural networks in Python

  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 17 Last month
Rankings
Dependent packages count: 10.7%
Average: 35.5%
Dependent repos count: 60.3%
Maintainers (1)
Last synced: 6 months ago
pypi.org: torch-abi

Tensors and Dynamic neural networks in Python with strong GPU acceleration

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 8 Last month
Rankings
Dependent packages count: 11.0%
Average: 36.3%
Dependent repos count: 61.7%
Maintainers (1)
Last synced: 6 months ago
pypi.org: torch-sas

Tensors and Dynamic neural networks in Python with strong GPU acceleration

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 11.0%
Average: 36.3%
Dependent repos count: 61.7%
Maintainers (1)
Last synced: 6 months ago
pypi.org: rpi-torch

Tensors and Dynamic neural networks in Python with strong GPU acceleration

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 1
  • Downloads: 8 Last month
Rankings
Dependent packages count: 9.7%
Dependent repos count: 21.9%
Average: 36.6%
Downloads: 78.3%
Maintainers (1)
Last synced: 6 months ago
anaconda.org: libtorch

PyTorch is a Python package that provides two high-level features: - Tensor computation (like NumPy) with strong GPU acceleration - Deep neural networks built on a tape-based autograd system You can reuse your favorite Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.

  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 46.5%
Average: 48.8%
Dependent repos count: 51.2%
Last synced: 6 months ago

Dependencies

android/pytorch_android/host/build.gradle maven
  • com.google.code.findbugs:jsr305 3.0.1 compileOnly
  • com.facebook.fbjni:fbjni-java-only 0.2.2 implementation
  • com.facebook.soloader:nativeloader 0.10.1 implementation
  • junit:junit 4.12 testImplementation
android/test_app/app/build.gradle maven
  • com.android.support:appcompat-v7 28.0.0 implementation
  • com.facebook.soloader:nativeloader 0.10.1 implementation
caffe2/requirements.txt pypi
  • enum34 *
  • numpy *
  • pyyaml *
  • requests *
docs/cpp/requirements.txt pypi
  • Jinja2 ==3.0.
  • breathe ==4.25.0
  • bs4 *
  • docutils ==0.16
  • exhale ==0.2.3
  • lxml *
  • six *
  • sphinx ==3.1.2
docs/requirements.txt pypi
  • matplotlib *
  • python-etcd >=0.4.5
  • sphinx ==5.0.0
  • sphinx-panels *
  • sphinx_copybutton *
  • sphinxcontrib.katex *
  • tensorboard *
.github/actions/build-android/action.yml actions
.github/actions/checkout-pytorch/action.yml actions
  • malfet/checkout silent-checkout composite
.github/actions/chown-workspace/action.yml actions
.github/actions/diskspace-cleanup/action.yml actions
.github/actions/download-build-artifacts/action.yml actions
  • actions/download-artifact v3 composite
  • seemethere/download-artifact-s3 v4 composite
.github/actions/filter-test-configs/action.yml actions
  • nick-fields/retry 3e91a01664abd3c5cd539100d10d33b9c5b68482 composite
.github/actions/get-workflow-job-id/action.yml actions
.github/actions/pytest-cache-download/action.yml actions
  • nick-fields/retry 3e91a01664abd3c5cd539100d10d33b9c5b68482 composite
.github/actions/pytest-cache-upload/action.yml actions
  • nick-fields/retry 3e91a01664abd3c5cd539100d10d33b9c5b68482 composite
.github/actions/setup-linux/action.yml actions
  • nick-fields/retry 3e91a01664abd3c5cd539100d10d33b9c5b68482 composite
.github/actions/setup-rocm/action.yml actions
  • ./.github/actions/diskspace-cleanup * composite
.github/actions/setup-win/action.yml actions
.github/actions/teardown-rocm/action.yml actions
  • ./.github/actions/diskspace-cleanup * composite
.github/actions/teardown-win/action.yml actions
  • nick-fields/retry v2.8.2 composite
  • pytorch/test-infra/.github/actions/cleanup-runner main composite
.github/actions/test-pytorch-binary/action.yml actions
.github/actions/update-commit-hash/action.yml actions
  • actions/checkout v3 composite
.github/actions/upload-test-artifacts/action.yml actions
  • actions/upload-artifact v3 composite
  • seemethere/upload-artifact-s3 v5 composite
.github/workflows/_android-build-test.yml actions
  • ./.github/actions/chown-workspace * composite
  • ./.github/actions/filter-test-configs * composite
  • ./.github/actions/setup-linux * composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/calculate-docker-image main composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
  • pytorch/test-infra/.github/actions/setup-ssh main composite
  • pytorch/test-infra/.github/actions/teardown-linux main composite
.github/workflows/_android-full-build-test.yml actions
  • ./.github/actions/build-android * composite
  • ./.github/actions/chown-workspace * composite
  • ./.github/actions/filter-test-configs * composite
  • ./.github/actions/setup-linux * composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/calculate-docker-image main composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
  • pytorch/test-infra/.github/actions/setup-ssh main composite
  • pytorch/test-infra/.github/actions/teardown-linux main composite
  • seemethere/upload-artifact-s3 v5 composite
.github/workflows/_bazel-build-test.yml actions
  • ./.github/actions/chown-workspace * composite
  • ./.github/actions/filter-test-configs * composite
  • ./.github/actions/get-workflow-job-id * composite
  • ./.github/actions/setup-linux * composite
  • ./.github/actions/upload-test-artifacts * composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/calculate-docker-image main composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
  • pytorch/test-infra/.github/actions/setup-nvidia main composite
  • pytorch/test-infra/.github/actions/setup-ssh main composite
  • pytorch/test-infra/.github/actions/teardown-linux main composite
.github/workflows/_binary-build-linux.yml actions
  • ./.github/actions/chown-workspace * composite
  • ./.github/actions/setup-linux * composite
  • ./pytorch/.github/actions/chown-workspace * composite
  • ./pytorch/.github/actions/filter-test-configs * composite
  • actions/upload-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
  • pytorch/test-infra/.github/actions/setup-ssh main composite
  • pytorch/test-infra/.github/actions/teardown-linux main composite
.github/workflows/_binary-test-linux.yml actions
  • ./.github/actions/chown-workspace * composite
  • ./.github/actions/setup-linux * composite
  • ./pytorch/.github/actions/chown-workspace * composite
  • ./pytorch/.github/actions/filter-test-configs * composite
  • ./pytorch/.github/actions/test-pytorch-binary * composite
  • actions/download-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
  • pytorch/test-infra/.github/actions/setup-nvidia main composite
  • pytorch/test-infra/.github/actions/setup-ssh main composite
  • pytorch/test-infra/.github/actions/teardown-linux main composite
.github/workflows/_binary-upload.yml actions
  • actions/download-artifact v3 composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
.github/workflows/_buck-build-test.yml actions
  • ./.github/actions/filter-test-configs * composite
  • actions/setup-java v3 composite
  • nick-fields/retry 3e91a01664abd3c5cd539100d10d33b9c5b68482 composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/setup-miniconda main composite
.github/workflows/_docs.yml actions
  • ./.github/actions/chown-workspace * composite
  • ./.github/actions/download-build-artifacts * composite
  • ./.github/actions/setup-linux * composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/calculate-docker-image main composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
  • pytorch/test-infra/.github/actions/setup-ssh main composite
  • pytorch/test-infra/.github/actions/teardown-linux main composite
  • seemethere/upload-artifact-s3 v5 composite
.github/workflows/_ios-build-test.yml actions
  • ./.github/actions/filter-test-configs * composite
  • actions/checkout v3 composite
  • actions/download-artifact v3 composite
  • actions/setup-python v4 composite
  • actions/upload-artifact v3 composite
  • nick-fields/retry v2.8.2 composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/setup-miniconda main composite
  • ruby/setup-ruby v1 composite
.github/workflows/_linux-build.yml actions
  • ./.github/actions/filter-test-configs * composite
  • ./.github/actions/get-workflow-job-id * composite
  • ./.github/actions/setup-linux * composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/calculate-docker-image main composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
  • pytorch/test-infra/.github/actions/setup-ssh main composite
  • pytorch/test-infra/.github/actions/teardown-linux main composite
  • seemethere/upload-artifact-s3 v5 composite
.github/workflows/_linux-test.yml actions
  • ./.github/actions/download-build-artifacts * composite
  • ./.github/actions/filter-test-configs * composite
  • ./.github/actions/get-workflow-job-id * composite
  • ./.github/actions/pytest-cache-download * composite
  • ./.github/actions/pytest-cache-upload * composite
  • ./.github/actions/setup-linux * composite
  • ./.github/actions/upload-test-artifacts * composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/calculate-docker-image main composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
  • pytorch/test-infra/.github/actions/setup-nvidia main composite
  • pytorch/test-infra/.github/actions/setup-ssh main composite
  • pytorch/test-infra/.github/actions/teardown-linux main composite
  • seemethere/upload-artifact-s3 v5 composite
.github/workflows/_mac-build.yml actions
  • ./.github/actions/filter-test-configs * composite
  • ./.github/actions/get-workflow-job-id * composite
  • actions/upload-artifact v3 composite
  • nick-fields/retry v2.8.2 composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/check-disk-space main composite
  • pytorch/test-infra/.github/actions/setup-miniconda main composite
.github/workflows/_mac-test-mps.yml actions
  • ./.github/actions/download-build-artifacts * composite
  • ./.github/actions/filter-test-configs * composite
  • ./.github/actions/get-workflow-job-id * composite
  • ./.github/actions/upload-test-artifacts * composite
  • malfet/checkout silent-checkout composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/setup-miniconda main composite
.github/workflows/_mac-test.yml actions
  • ./.github/actions/download-build-artifacts * composite
  • ./.github/actions/filter-test-configs * composite
  • ./.github/actions/get-workflow-job-id * composite
  • ./.github/actions/upload-test-artifacts * composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/check-disk-space main composite
  • pytorch/test-infra/.github/actions/setup-miniconda main composite
.github/workflows/_rocm-test.yml actions
  • ./.github/actions/download-build-artifacts * composite
  • ./.github/actions/filter-test-configs * composite
  • ./.github/actions/get-workflow-job-id * composite
  • ./.github/actions/setup-rocm * composite
  • ./.github/actions/teardown-rocm * composite
  • ./.github/actions/upload-test-artifacts * composite
  • actions/upload-artifact v3 composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/calculate-docker-image main composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
.github/workflows/_run_android_tests.yml actions
  • ./.github/actions/filter-test-configs * composite
  • nick-fields/retry v2.8.2 composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/setup-miniconda main composite
  • reactivecircus/android-emulator-runner v2 composite
.github/workflows/_win-build.yml actions
  • ./.github/actions/filter-test-configs * composite
  • ./.github/actions/get-workflow-job-id * composite
  • ./.github/actions/setup-win * composite
  • ./.github/actions/teardown-win * composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/cleanup-runner main composite
  • pytorch/test-infra/.github/actions/setup-ssh main composite
  • seemethere/upload-artifact-s3 v5 composite
.github/workflows/_win-test.yml actions
  • ./.github/actions/filter-test-configs * composite
  • ./.github/actions/get-workflow-job-id * composite
  • ./.github/actions/pytest-cache-download * composite
  • ./.github/actions/pytest-cache-upload * composite
  • ./.github/actions/setup-win * composite
  • ./.github/actions/teardown-win * composite
  • ./.github/actions/upload-test-artifacts * composite
  • nick-fields/retry 3e91a01664abd3c5cd539100d10d33b9c5b68482 composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/cleanup-runner main composite
  • pytorch/test-infra/.github/actions/setup-ssh main composite
  • seemethere/download-artifact-s3 v4 composite
.github/workflows/auto_request_review.yml actions
  • necojackarc/auto-request-review e08cdffa277d50854744de3f76230260e61c67f4 composite
.github/workflows/build-ios-binaries.yml actions
.github/workflows/build-triton-wheel.yml actions
  • ./.github/actions/setup-linux * composite
  • actions/checkout v3 composite
  • actions/download-artifact v3 composite
  • actions/upload-artifact v3 composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
  • pytorch/test-infra/.github/actions/setup-ssh main composite
  • pytorch/test-infra/.github/actions/teardown-linux main composite
.github/workflows/check-labels.yml actions
  • actions/setup-python v4 composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
.github/workflows/close-nonexistent-disable-issues.yml actions
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
.github/workflows/create_release.yml actions
  • malfet/checkout silent-checkout composite
  • softprops/action-gh-release v1 composite
.github/workflows/docker-builds.yml actions
  • ./.github/actions/chown-workspace * composite
  • ./.github/actions/setup-linux * composite
  • nick-fields/retry 3e91a01664abd3c5cd539100d10d33b9c5b68482 composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
  • pytorch/test-infra/.github/actions/calculate-docker-image main composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
  • pytorch/test-infra/.github/actions/teardown-linux main composite
.github/workflows/docker-release.yml actions
  • ./.github/actions/setup-linux * composite
  • actions/checkout v3 composite
  • docker/login-action v2 composite
  • docker/setup-buildx-action v2 composite
  • docker/setup-qemu-action v2 composite
  • pytorch/test-infra/.github/actions/setup-ssh main composite
  • pytorch/test-infra/.github/actions/teardown-linux main composite
.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml actions
.github/workflows/generated-linux-binary-conda-nightly.yml actions
.github/workflows/generated-linux-binary-libtorch-cxx11-abi-main.yml actions
.github/workflows/generated-linux-binary-libtorch-cxx11-abi-nightly.yml actions
  • ./.github/actions/setup-rocm * composite
  • ./.github/actions/teardown-rocm * composite
  • ./pytorch/.github/actions/test-pytorch-binary * composite
  • actions/download-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
.github/workflows/generated-linux-binary-libtorch-pre-cxx11-main.yml actions
.github/workflows/generated-linux-binary-libtorch-pre-cxx11-nightly.yml actions
  • ./.github/actions/setup-rocm * composite
  • ./.github/actions/teardown-rocm * composite
  • ./pytorch/.github/actions/test-pytorch-binary * composite
  • actions/download-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
.github/workflows/generated-linux-binary-manywheel-main.yml actions
.github/workflows/generated-linux-binary-manywheel-nightly.yml actions
  • ./.github/actions/setup-rocm * composite
  • ./.github/actions/teardown-rocm * composite
  • ./pytorch/.github/actions/test-pytorch-binary * composite
  • actions/download-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
.github/workflows/generated-macos-arm64-binary-conda-nightly.yml actions
  • actions/upload-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • nick-fields/retry v2.8.2 composite
.github/workflows/generated-macos-arm64-binary-wheel-nightly.yml actions
  • actions/upload-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • nick-fields/retry v2.8.2 composite
.github/workflows/generated-macos-binary-conda-nightly.yml actions
  • actions/upload-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • nick-fields/retry v2.8.2 composite
.github/workflows/generated-macos-binary-libtorch-cxx11-abi-nightly.yml actions
  • actions/upload-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • nick-fields/retry v2.8.2 composite
.github/workflows/generated-macos-binary-wheel-nightly.yml actions
  • actions/upload-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • nick-fields/retry v2.8.2 composite
.github/workflows/generated-windows-binary-conda-nightly.yml actions
  • actions/download-artifact v3 composite
  • actions/upload-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • seemethere/add-github-ssh-key v1 composite
.github/workflows/generated-windows-binary-libtorch-debug-main.yml actions
  • actions/download-artifact v3 composite
  • actions/upload-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • seemethere/add-github-ssh-key v1 composite
.github/workflows/generated-windows-binary-libtorch-debug-nightly.yml actions
  • actions/download-artifact v3 composite
  • actions/upload-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • seemethere/add-github-ssh-key v1 composite
.github/workflows/generated-windows-binary-libtorch-release-main.yml actions
  • actions/download-artifact v3 composite
  • actions/upload-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • seemethere/add-github-ssh-key v1 composite
.github/workflows/generated-windows-binary-libtorch-release-nightly.yml actions
  • actions/download-artifact v3 composite
  • actions/upload-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • seemethere/add-github-ssh-key v1 composite
.github/workflows/generated-windows-binary-wheel-nightly.yml actions
  • actions/download-artifact v3 composite
  • actions/upload-artifact v3 composite
  • malfet/checkout silent-checkout composite
  • seemethere/add-github-ssh-key v1 composite
.github/workflows/inductor-perf-compare.yml actions
.github/workflows/inductor-perf-test-nightly.yml actions
.github/workflows/inductor-periodic.yml actions
.github/workflows/inductor.yml actions
.github/workflows/labeler.yml actions
  • actions/labeler v4 composite
.github/workflows/lint-bc.yml actions
  • pytorch/test-infra/.github/actions/bc-lint main composite
.github/workflows/lint.yml actions
  • actions/setup-python v4 composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
.github/workflows/mac-mps.yml actions
.github/workflows/nightly-rockset-uploads.yml actions
  • actions/setup-python v4 composite
  • nick-fields/retry v2.8.2 composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
.github/workflows/nightly.yml actions
  • ./.github/actions/update-commit-hash * composite
  • actions/checkout v3 composite
.github/workflows/periodic.yml actions
.github/workflows/pull.yml actions
.github/workflows/revert.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v4 composite
.github/workflows/scorecards.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v3 composite
  • github/codeql-action/upload-sarif 5f532563584d71fdef14ee64d17bafb34f751ce5 composite
  • ossf/scorecard-action 865b4092859256271290c77adbd10a43f4779972 composite
.github/workflows/slow.yml actions
.github/workflows/stale.yml actions
  • actions/github-script v6 composite
.github/workflows/trunk.yml actions
.github/workflows/trymerge.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/tryrebase.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v4 composite
.github/workflows/unstable-periodic.yml actions
.github/workflows/unstable.yml actions
.github/workflows/update-viablestrict.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/update_pytorch_labels.yml actions
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
.github/workflows/upload-alerts.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
  • pytorch/test-infra/.github/actions/upload-alerts main composite
.github/workflows/upload-test-stats.yml actions
  • actions/setup-python v4 composite
  • octokit/request-action v2.1.0 composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
.github/workflows/upload-torch-dynamo-perf-stats.yml actions
  • actions/setup-python v4 composite
  • octokit/request-action v2.1.0 composite
  • pytorch/pytorch/.github/actions/checkout-pytorch main composite
.github/workflows/weekly.yml actions
  • ./.github/actions/update-commit-hash * composite
  • actions/checkout v3 composite
.ci/docker/centos-rocm/Dockerfile docker
  • centos ${CENTOS_VERSION} build
.ci/docker/linter/Dockerfile docker
  • ubuntu ${UBUNTU_VERSION} build
.ci/docker/linter-cuda/Dockerfile docker
  • ubuntu ${UBUNTU_VERSION} build
.ci/docker/ubuntu/Dockerfile docker
  • ubuntu ${UBUNTU_VERSION} build
.ci/docker/ubuntu-cuda/Dockerfile docker
  • ${IMAGE_NAME} latest build
.ci/docker/ubuntu-rocm/Dockerfile docker
  • ubuntu ${UBUNTU_VERSION} build