dockerunifieduimainterface
A UIMA-based tool for the scaled, uniform, distributed, platform-independent and easily reusable use of Natural Language Processing (NLP) methods using Docker.
https://github.com/texttechnologylab/dockerunifieduimainterface
Science Score: 67.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 18 DOI reference(s) in README -
✓Academic publication links
Links to: sciencedirect.com, zenodo.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.1%) to scientific vocabulary
Keywords
Repository
A UIMA-based tool for the scaled, uniform, distributed, platform-independent and easily reusable use of Natural Language Processing (NLP) methods using Docker.
Basic Info
- Host: GitHub
- Owner: texttechnologylab
- License: agpl-3.0
- Language: Java
- Default Branch: main
- Homepage: https://texttechnologylab.github.io/DockerUnifiedUIMAInterface/
- Size: 261 MB
Statistics
- Stars: 14
- Watchers: 4
- Forks: 15
- Open Issues: 12
- Releases: 7
Topics
Metadata Files
README.md
Docker Unified UIMA Interface (DUUI)

Automatic analysis of large text corpora is a complex task. This complexity particularly concerns the question of time efficiency. Furthermore, efficient, flexible, and extensible textanalysis requires the continuous integration of every new text analysis tools. Since there are currently, in the area of NLP and especially in the application context of UIMA, only very few to no adequate frameworks for these purposes, which are not simultaneously outdated or can no longer be used for security reasons, this work will present a new approach to fill this gap. To this end, we present Docker Unified UIMA Interface (DUUI), a scalable, flexible, lightweight, and featurerich framework for automated and distributed analysis of text corpora that leverages experience in Big Data analytics and virtualization with Docker.
Features
Using DUUI, NLP preprocessing on texts can be performed using the following features: * Horizontal and vertical scaling * Capturing heterogeneous annotation landscapes * Capturing heterogeneous implementation landscapes * Reproducible & reusable annotations * Monitoring and error-reporting * Lightweight usability
Functions
DUUI has different components which are distinguished into Drivers and Components.
Components
Components represent the actual analysis methods for recognizing (among others) tokens, named entities, POS and other ingredients of the NLP. All components must be analysis methods in the definition of UIMA. Of course, existing analysis methods based on Java can also be used directly (e.g. dkpro).
Independently of this, Components can also be implemented in alternative programming languages, as long as the interface of DUUI is used, they can be targeted and used.
Current implementations
Driver
DUUI has a variety of drivers that enable communication as well as the execution of Components in different runtime environments.
UIMADriver
The UIMADriver runs a UIMA Analysis Engine (AE) on the local machine (using local memory and processor) in the same process within the JRE and allows scaling on that machine by replicating the underlying Analysis Engine. This enables the use of all previous analysis methods based on UIMA AE without further adjustments.
DockerDriver
The DUUI core driver runs Components on the local Docker daemon and enables machine-specific resource management. This requires that the AEs are available as Docker images according to DUUI to run as Docker containers. It is not relevant whether the Docker image is stored locally or in a remote registry, since the Docker container is built on startup. This makes it very easy to test new AEs (as local containers) before being released. The distinction between local and remote Docker images is achieved by the URI of the Docker image used
RemoteDriver
AEs that are not available as containers and whose models can or should not be shared can still be used if they are available via REST. Since DUUI communicates via RESTful, remote endpoints can be used for pre-processing. In general, AEs implemented based on DUUI can be accessed and used via REST, but the scaling is limited regarding request and processing capabilities of the hosting system. In addition, Components addressed via the RemoteDRiver can be used as services. This has advantages for AEs that need to hold large models in memory and thus require a long startup time. To avoid continuous reloading, it may be necessary to start a service once or twice in a dedicated mode and then use a RemoteDriver to access it. To use services, their URL must be specified to enable horizontal scaling.
SwarmDriver
The SwarmDriver complements the DockerDriver; it uses the same function alities, but its AEs are used as Docker images distributed within the Docker Swarm network. A swarm consists of n nodes and is controlled by a leader node within the Docker framework. However, if an application using DUUI is executed on a Docker leader node, the individual AEs can be executed on multiple swarm nodes.
KubernetesDriver
The KubernetesDriver works similarly to the SwarmDriver, but Kubernetes is used as the runtime environment instead of Docker Swarm.
PodmanDriver
The PodmanDriver works similarly to the DockerDriver, but Podman runs rootless.
Requirements
Using
There are basically two ways to use DUUI for preprocessing texts: * Clone the GitHub project. * Include the GitHub project using JitPack via maven (Recommended).
Using JitPack
Add the following to your pom file:
xml
<repositories>
<repository>
<id>jitpack.io</id>
<url>https://jitpack.io</url>
</repository>
</repositories>
After that DUUI can be integrated as a dependency:
xml
<dependency>
<groupId>com.github.texttechnologylab</groupId>
<artifactId>DockerUnifiedUIMAInterface</artifactId>
<version>1.4.6</version>
</dependency>
Use with Java
```java int iWorkers = 2; // define the number of workers
JCas jc = JCasFactory.createJCas(); // A empty CAS document is defined.
// load content into jc ...
// Defining LUA-Context for communication DUUILuaContext ctx = LuaConsts.getJSON();
// Defining a storage backend based on SQlite. DUUISqliteStorageBackend sqlite = new DUUISqliteStorageBackend("loggingSQlite.db") .withConnectionPoolSize(iWorkers);
// The composer is defined and initialized with a standard Lua context as well with a storage backend. DUUIComposer composer = new DUUIComposer().withLuaContext(ctx) .withScale(iWorkers).withStorageBackend(sqlite);
// Instantiate drivers with options (example) DUUIDockerDriver dockerdriver = new DUUIDockerDriver() .withTimeout(10000); DUUIRemoteDriver remotedriver = new DUUIRemoteDriver(10000); DUUIUIMADriver uimadriver = new DUUIUIMADriver().withDebug(true); DUUISwarmDriver swarmdriver = new DUUISwarmDriver();
// A driver must be added before components can be added for it in the composer. After that the composer is able to use the individual drivers. composer.addDriver(dockerdriver, remotedriver, uimadriver, swarmdriver);
// A new component for the composer is added composer.add(new DUUIDockerDriver. Component("docker.texttechnologylab.org/gnfinder:latest") .withScale(iWorkers) // The image is reloaded and fetched, regardless of whether it already exists locally (optional) .withImageFetching());
// Adding a UIMA annotator for writing the result of the pipeline as XMI files. composer.add(new DUUIUIMADriver.Component( createEngineDescription(XmiWriter.class, XmiWriter.PARAMTARGETLOCATION, sOutputPath, )).withScale(iWorkers));
// The document is processed through the pipeline. In addition, files of entire repositories can be processed. composer.run(jc); ```
Create your own DUUI images
Small Docker Guide
Please note that you are not in a VPN network, this can influence or prevent the creation of the image.
To build a Docker DUUI image, follow these steps:
```xml cd /path/of/your/Dockerfile
build -t IMAGENAME:VERSION .
docker image tag IMAGENAME:VERSION REPOSITORY/IMAGENAME:VERSION
docker push REPOSITORY/IMAGENAME:VERSION ``` After the build, the image can be used / tried locally and after pushing it to the remote repository, it can also be used from that repository.
UIMA-Components
A list of existing DUUI components as Docker images can be found here.
Cite
If you want to use the project please quote this as follows:
Alexander Leonhardt, Giuseppe Abrami, Daniel Baumartz and Alexander Mehler. (2023). "Unlocking the Heterogeneous Landscape of Big Data NLP with DUUI." Findings of the Association for Computational Linguistics: EMNLP 2023, 385–399. [LINK] [PDF]
Giuseppe Abrami and Alexander Mehler. August, 2024. Efficient, uniform and scalable parallel NLP pre-processing with DUUI: Perspectives and Best Practice for the Digital Humanities. Digital Humanities Conference 2024 - Book of Abstracts (DH 2024), 15–18 [LINK] [POSTER]
Giuseppe Abrami, Markos Genios, Filip Fitzermann, Daniel Baumartz and Alexander Mehler. (2025). "Docker Unified UIMA Interface: New perspectives for NLP on big data" SoftwareX, Volume 29, 2025, 102033, ISSN 2352-7110, [LINK]
Giuseppe Abrami, Daniel Baumartz and Alexander Mehler. 2025. "DUUI: A Toolbox for the Construction of a new Kind of Natural Language Processing". Proceedings of the DHd 2025: Under Construction. Geisteswissenschaften und Data Humanities, 446–448 [LINK] [POSTER]
BibTeX
``` @inproceedings{Leonhardt:et:al:2023, title = {Unlocking the Heterogeneous Landscape of Big Data {NLP} with {DUUI}}, author = {Leonhardt, Alexander and Abrami, Giuseppe and Baumartz, Daniel and Mehler, Alexander}, editor = {Bouamor, Houda and Pino, Juan and Bali, Kalika}, booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2023}, year = {2023}, address = {Singapore}, publisher = {Association for Computational Linguistics}, url = {https://aclanthology.org/2023.findings-emnlp.29}, pages = {385--399}, pdf = {https://aclanthology.org/2023.findings-emnlp.29.pdf}, abstract = {Automatic analysis of large corpora is a complex task, especially in terms of time efficiency. This complexity is increased by the fact that flexible, extensible text analysis requires the continuous integration of ever new tools. Since there are no adequate frameworks for these purposes in the field of NLP, and especially in the context of UIMA, that are not outdated or unusable for security reasons, we present a new approach to address the latter task: Docker Unified UIMA Interface (DUUI), a scalable, flexible, lightweight, and feature-rich framework for automatic distributed analysis of text corpora that leverages Big Data experience and virtualization with Docker. We evaluate DUUI{'}s communication approach against a state-of-the-art approach and demonstrate its outstanding behavior in terms of time efficiency, enabling the analysis of big text data.} }
@inproceedings{Abrami:Mehler:2024, author = {Abrami, Giuseppe and Mehler, Alexander}, title = {Efficient, uniform and scalable parallel NLP pre-processing with DUUI: Perspectives and Best Practice for the Digital Humanities}, year = {2024}, month = {08}, editor = {Karajgikar, Jajwalya and Janco, Andrew and Otis, Jessica}, booktitle = {Digital Humanities Conference 2024 - Book of Abstracts (DH 2024)}, location = {Washington, DC, USA}, series = {DH}, keywords = {duui}, publisher = {Zenodo}, doi = {10.5281/zenodo.13761079}, poster = {https://www.texttechnologylab.org/wp-content/uploads/2024/12/DH2024Poster.pdf}, pdf = {https://www.texttechnologylab.org/wp-content/uploads/2024/12/DH2024Abstract.pdf}, url = {https://doi.org/10.5281/zenodo.13761079}, pages = {15--18}, numpages = {4} }
@article{Abrami:et:al:2025:a, title = {Docker Unified UIMA Interface: New perspectives for NLP on big data}, journal = {SoftwareX}, volume = {29}, pages = {102033}, year = {2025}, issn = {2352-7110}, doi = {https://doi.org/10.1016/j.softx.2024.102033}, url = {https://www.sciencedirect.com/science/article/pii/S2352711024004047}, author = {Giuseppe Abrami and Markos Genios and Filip Fitzermann and Daniel Baumartz and Alexander Mehler} }
@inproceedings{Abrami:et:al:2025:b, author = {Abrami, Giuseppe and Baumartz, Daniel and Mehler, Alexander}, title = {DUUI: A Toolbox for the Construction of a new Kind of Natural Language Processing}, year = {2025}, booktitle = {Proceedings of the DHd 2025: Under Construction. Geisteswissenschaften und Data Humanities}, numpages = {3}, location = {Bielefeld, Germany}, series = {DHd 2025}, publisher = {Zenodo}, keywords = {duui}, pages = {446--448}, doi = {10.5281/zenodo.14943128}, url = {https://doi.org/10.5281/zenodo.14943128}, poster = {https://zenodo.org/records/14944575} }
```
Owner
- Name: Text Technology Lab
- Login: texttechnologylab
- Kind: organization
- Location: Frankfurt am Main
- Website: https://www.texttechnologylab.org
- Twitter: ttlab_ffm
- Repositories: 77
- Profile: https://github.com/texttechnologylab
The Text Technology Lab, headed by Prof. Alexander Mehler, is part of the Department of Computer Science and Mathematics at the Goethe Universität in Frankfurt.
Citation (CITATION.cff)
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Leonhardt"
given-names: "Alexander"
orcidid: "https://orcid.org/0009-0006-8263-6900"
- family-names: "Abrami"
given-names: "Giuseppe"
orcid: "https://orcid.org/0000-0002-7084-4909"
- family-names: "Baumartz"
given-names: "Daniel"
orcid: "https://orcid.org/0009-0001-7105-5020"
- family-names: "Mehler"
given-names: "Alexander"
orcid: "https://orcid.org/0000-0003-2567-7539"
title: "Docker Unified UIMA Interface (DUUI)"
version: 1.0
date-released: 2023-11-26
license: AGPLv3
preferred-citation:
authors:
- family-names: "Leonhardt"
given-names: "Alexander"
orcidid: "https://orcid.org/0009-0006-8263-6900"
- family-names: "Abrami"
given-names: "Giuseppe"
orcid: "https://orcid.org/0000-0002-7084-4909"
- family-names: "Baumartz"
given-names: "Daniel"
orcid: "https://orcid.org/0009-0001-7105-5020"
- family-names: "Mehler"
given-names: "Alexander"
orcid: "https://orcid.org/0000-0003-2567-7539"
title: "Unlocking the Heterogeneous Landscape of Big Data NLP with DUUI"
year: 2023
collection-title: "Findings of the Association for Computational Linguistics: EMNLP 2023"
publisher:
name: "Association for Computational Linguistics"
pages: "385--399"
url: "https://aclanthology.org/2023.findings-emnlp.29"
collection-type: proceedings
conference:
date-end: "2023-12-06"
name: "Findings of the Association for Computational Linguistics: EMNLP 2023"
type: conference-paper
url: "https://github.com/texttechnologylab/DockerUnifiedUIMAInterface"
GitHub Events
Total
- Create event: 9
- Issues event: 2
- Release event: 5
- Watch event: 8
- Delete event: 4
- Issue comment event: 3
- Push event: 35
- Pull request event: 43
- Fork event: 6
Last Year
- Create event: 9
- Issues event: 2
- Release event: 5
- Watch event: 8
- Delete event: 4
- Issue comment event: 3
- Push event: 35
- Pull request event: 43
- Fork event: 6
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 2
- Total pull requests: 18
- Average time to close issues: about 1 year
- Average time to close pull requests: 4 days
- Total issue authors: 2
- Total pull request authors: 6
- Average comments per issue: 0.5
- Average comments per pull request: 0.0
- Merged pull requests: 15
- Bot issues: 0
- Bot pull requests: 4
Past Year
- Issues: 1
- Pull requests: 18
- Average time to close issues: N/A
- Average time to close pull requests: 4 days
- Issue authors: 1
- Pull request authors: 6
- Average comments per issue: 0.0
- Average comments per pull request: 0.0
- Merged pull requests: 15
- Bot issues: 0
- Bot pull requests: 4
Top Authors
Issue Authors
- Myyyvothrr (1)
- aliabusaleh (1)
- p2keshtidar (1)
- rameshjes (1)
Pull Request Authors
- abrami (23)
- dterefe (7)
- Myyyvothrr (7)
- dependabot[bot] (5)
- manu-schaaf (4)
- mevbagci (3)
- CedricBorko (3)
- LeonHammerla (2)
- Mocretion (2)
- m-stoeckel (1)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- actions/checkout v3 composite
- actions/setup-java v3 composite
- async-trait 0.1.53
- autocfg 1.1.0
- axum 0.5.1
- axum-core 0.2.1
- bitflags 1.3.2
- byteorder 1.4.3
- bytes 1.1.0
- cfg-if 1.0.0
- fnv 1.0.7
- form_urlencoded 1.0.1
- futures-channel 0.3.21
- futures-core 0.3.21
- futures-sink 0.3.21
- futures-task 0.3.21
- futures-util 0.3.21
- hermit-abi 0.1.19
- http 0.2.6
- http-body 0.4.4
- http-range-header 0.3.0
- httparse 1.7.0
- httpdate 1.0.2
- hyper 0.14.18
- itoa 1.0.1
- lazy_static 1.4.0
- libc 0.2.123
- lock_api 0.4.7
- log 0.4.16
- matches 0.1.9
- matchit 0.5.0
- memchr 2.4.1
- mime 0.3.16
- mio 0.8.2
- miow 0.3.7
- ntapi 0.3.7
- num-traits 0.2.14
- num_cpus 1.13.1
- once_cell 1.10.0
- parking_lot 0.12.0
- parking_lot_core 0.9.2
- percent-encoding 2.1.0
- pin-project 1.0.10
- pin-project-internal 1.0.10
- pin-project-lite 0.2.8
- pin-utils 0.1.0
- proc-macro2 1.0.37
- quote 1.0.18
- redox_syscall 0.2.13
- rmp 0.8.10
- rmp-serde 1.0.0
- ryu 1.0.9
- scopeguard 1.1.0
- serde 1.0.136
- serde_derive 1.0.136
- serde_json 1.0.79
- serde_urlencoded 0.7.1
- signal-hook-registry 1.4.0
- smallvec 1.8.0
- socket2 0.4.4
- syn 1.0.91
- sync_wrapper 0.1.1
- tokio 1.17.0
- tokio-macros 1.7.0
- tokio-util 0.7.1
- tower 0.4.12
- tower-http 0.2.5
- tower-layer 0.3.1
- tower-service 0.3.1
- tracing 0.1.33
- tracing-core 0.1.25
- try-lock 0.2.3
- unicode-xid 0.2.2
- want 0.3.0
- wasi 0.11.0+wasi-snapshot-preview1
- winapi 0.3.9
- winapi-i686-pc-windows-gnu 0.4.0
- winapi-x86_64-pc-windows-gnu 0.4.0
- windows-sys 0.34.0
- windows_aarch64_msvc 0.34.0
- windows_i686_gnu 0.34.0
- windows_i686_msvc 0.34.0
- windows_x86_64_gnu 0.34.0
- windows_x86_64_msvc 0.34.0
- async-trait 0.1.53
- autocfg 1.1.0
- axum 0.5.1
- axum-core 0.2.1
- bitflags 1.3.2
- byteorder 1.4.3
- bytes 1.1.0
- cfg-if 1.0.0
- fnv 1.0.7
- form_urlencoded 1.0.1
- futures-channel 0.3.21
- futures-core 0.3.21
- futures-sink 0.3.21
- futures-task 0.3.21
- futures-util 0.3.21
- hermit-abi 0.1.19
- http 0.2.6
- http-body 0.4.4
- http-range-header 0.3.0
- httparse 1.7.0
- httpdate 1.0.2
- hyper 0.14.18
- itoa 1.0.1
- lazy_static 1.4.0
- libc 0.2.123
- lock_api 0.4.7
- log 0.4.16
- matches 0.1.9
- matchit 0.5.0
- memchr 2.4.1
- mime 0.3.16
- mio 0.8.2
- miow 0.3.7
- ntapi 0.3.7
- num-traits 0.2.14
- num_cpus 1.13.1
- once_cell 1.10.0
- parking_lot 0.12.0
- parking_lot_core 0.9.2
- percent-encoding 2.1.0
- pin-project 1.0.10
- pin-project-internal 1.0.10
- pin-project-lite 0.2.8
- pin-utils 0.1.0
- proc-macro2 1.0.37
- quote 1.0.18
- redox_syscall 0.2.13
- rmp 0.8.10
- rmp-serde 1.0.0
- ryu 1.0.9
- scopeguard 1.1.0
- serde 1.0.136
- serde_derive 1.0.136
- serde_json 1.0.79
- serde_urlencoded 0.7.1
- signal-hook-registry 1.4.0
- smallvec 1.8.0
- socket2 0.4.4
- syn 1.0.91
- sync_wrapper 0.1.1
- tokio 1.17.0
- tokio-macros 1.7.0
- tokio-util 0.7.1
- tower 0.4.12
- tower-http 0.2.5
- tower-layer 0.3.1
- tower-service 0.3.1
- tracing 0.1.33
- tracing-core 0.1.25
- try-lock 0.2.3
- unicode-xid 0.2.2
- want 0.3.0
- wasi 0.11.0+wasi-snapshot-preview1
- winapi 0.3.9
- winapi-i686-pc-windows-gnu 0.4.0
- winapi-x86_64-pc-windows-gnu 0.4.0
- windows-sys 0.34.0
- windows_aarch64_msvc 0.34.0
- windows_i686_gnu 0.34.0
- windows_i686_msvc 0.34.0
- windows_x86_64_gnu 0.34.0
- windows_x86_64_msvc 0.34.0
- async-trait 0.1.53
- autocfg 1.1.0
- axum 0.5.1
- axum-core 0.2.1
- bitflags 1.3.2
- byteorder 1.4.3
- bytes 1.1.0
- cfg-if 1.0.0
- fnv 1.0.7
- form_urlencoded 1.0.1
- futures-channel 0.3.21
- futures-core 0.3.21
- futures-sink 0.3.21
- futures-task 0.3.21
- futures-util 0.3.21
- hermit-abi 0.1.19
- http 0.2.6
- http-body 0.4.4
- http-range-header 0.3.0
- httparse 1.7.0
- httpdate 1.0.2
- hyper 0.14.18
- itoa 1.0.1
- lazy_static 1.4.0
- libc 0.2.123
- lock_api 0.4.7
- log 0.4.16
- matches 0.1.9
- matchit 0.5.0
- memchr 2.4.1
- mime 0.3.16
- mio 0.8.2
- miow 0.3.7
- ntapi 0.3.7
- num-traits 0.2.14
- num_cpus 1.13.1
- once_cell 1.10.0
- parking_lot 0.12.0
- parking_lot_core 0.9.2
- percent-encoding 2.1.0
- pin-project 1.0.10
- pin-project-internal 1.0.10
- pin-project-lite 0.2.8
- pin-utils 0.1.0
- proc-macro2 1.0.37
- quote 1.0.18
- redox_syscall 0.2.13
- rmp 0.8.10
- rmp-serde 1.0.0
- ryu 1.0.9
- scopeguard 1.1.0
- serde 1.0.136
- serde_derive 1.0.136
- serde_json 1.0.79
- serde_urlencoded 0.7.1
- signal-hook-registry 1.4.0
- smallvec 1.8.0
- socket2 0.4.4
- syn 1.0.91
- sync_wrapper 0.1.1
- tokio 1.17.0
- tokio-macros 1.7.0
- tokio-util 0.7.1
- tower 0.4.12
- tower-http 0.2.5
- tower-layer 0.3.1
- tower-service 0.3.1
- tracing 0.1.33
- tracing-core 0.1.25
- try-lock 0.2.3
- unicode-xid 0.2.2
- want 0.3.0
- wasi 0.11.0+wasi-snapshot-preview1
- winapi 0.3.9
- winapi-i686-pc-windows-gnu 0.4.0
- winapi-x86_64-pc-windows-gnu 0.4.0
- windows-sys 0.34.0
- windows_aarch64_msvc 0.34.0
- windows_i686_gnu 0.34.0
- windows_i686_msvc 0.34.0
- windows_x86_64_gnu 0.34.0
- windows_x86_64_msvc 0.34.0
- async-trait 0.1.53
- autocfg 1.1.0
- axum 0.5.1
- axum-core 0.2.1
- bitflags 1.3.2
- byteorder 1.4.3
- bytes 1.1.0
- cfg-if 1.0.0
- fnv 1.0.7
- form_urlencoded 1.0.1
- futures-channel 0.3.21
- futures-core 0.3.21
- futures-sink 0.3.21
- futures-task 0.3.21
- futures-util 0.3.21
- hermit-abi 0.1.19
- http 0.2.6
- http-body 0.4.4
- http-range-header 0.3.0
- httparse 1.7.0
- httpdate 1.0.2
- hyper 0.14.18
- itoa 1.0.1
- lazy_static 1.4.0
- libc 0.2.123
- lock_api 0.4.7
- log 0.4.16
- matches 0.1.9
- matchit 0.5.0
- memchr 2.4.1
- mime 0.3.16
- mio 0.8.2
- miow 0.3.7
- ntapi 0.3.7
- num-traits 0.2.14
- num_cpus 1.13.1
- once_cell 1.10.0
- parking_lot 0.12.0
- parking_lot_core 0.9.2
- percent-encoding 2.1.0
- pin-project 1.0.10
- pin-project-internal 1.0.10
- pin-project-lite 0.2.8
- pin-utils 0.1.0
- proc-macro2 1.0.37
- quote 1.0.18
- redox_syscall 0.2.13
- rmp 0.8.10
- rmp-serde 1.0.0
- ryu 1.0.9
- scopeguard 1.1.0
- serde 1.0.136
- serde_derive 1.0.136
- serde_json 1.0.79
- serde_urlencoded 0.7.1
- signal-hook-registry 1.4.0
- smallvec 1.8.0
- socket2 0.4.4
- syn 1.0.91
- sync_wrapper 0.1.1
- tokio 1.17.0
- tokio-macros 1.7.0
- tokio-util 0.7.1
- tower 0.4.12
- tower-http 0.2.5
- tower-layer 0.3.1
- tower-service 0.3.1
- tracing 0.1.33
- tracing-core 0.1.25
- try-lock 0.2.3
- unicode-xid 0.2.2
- want 0.3.0
- wasi 0.11.0+wasi-snapshot-preview1
- winapi 0.3.9
- winapi-i686-pc-windows-gnu 0.4.0
- winapi-x86_64-pc-windows-gnu 0.4.0
- windows-sys 0.34.0
- windows_aarch64_msvc 0.34.0
- windows_i686_gnu 0.34.0
- windows_i686_msvc 0.34.0
- windows_x86_64_gnu 0.34.0
- windows_x86_64_msvc 0.34.0
- async-trait 0.1.53
- autocfg 1.1.0
- axum 0.5.1
- axum-core 0.2.1
- bitflags 1.3.2
- byteorder 1.4.3
- bytes 1.1.0
- cfg-if 1.0.0
- fnv 1.0.7
- form_urlencoded 1.0.1
- futures-channel 0.3.21
- futures-core 0.3.21
- futures-sink 0.3.21
- futures-task 0.3.21
- futures-util 0.3.21
- hermit-abi 0.1.19
- http 0.2.6
- http-body 0.4.4
- http-range-header 0.3.0
- httparse 1.7.0
- httpdate 1.0.2
- hyper 0.14.18
- itoa 1.0.1
- lazy_static 1.4.0
- libc 0.2.123
- lock_api 0.4.7
- log 0.4.16
- matches 0.1.9
- matchit 0.5.0
- memchr 2.4.1
- mime 0.3.16
- mio 0.8.2
- miow 0.3.7
- ntapi 0.3.7
- num-traits 0.2.14
- num_cpus 1.13.1
- once_cell 1.10.0
- parking_lot 0.12.0
- parking_lot_core 0.9.2
- percent-encoding 2.1.0
- pin-project 1.0.10
- pin-project-internal 1.0.10
- pin-project-lite 0.2.8
- pin-utils 0.1.0
- proc-macro2 1.0.37
- quote 1.0.18
- redox_syscall 0.2.13
- rmp 0.8.10
- rmp-serde 1.0.0
- ryu 1.0.9
- scopeguard 1.1.0
- serde 1.0.136
- serde_derive 1.0.136
- serde_json 1.0.79
- serde_urlencoded 0.7.1
- signal-hook-registry 1.4.0
- smallvec 1.8.0
- socket2 0.4.4
- syn 1.0.91
- sync_wrapper 0.1.1
- tokio 1.17.0
- tokio-macros 1.7.0
- tokio-util 0.7.1
- tower 0.4.12
- tower-http 0.2.5
- tower-layer 0.3.1
- tower-service 0.3.1
- tracing 0.1.33
- tracing-core 0.1.25
- try-lock 0.2.3
- unicode-xid 0.2.2
- want 0.3.0
- wasi 0.11.0+wasi-snapshot-preview1
- winapi 0.3.9
- winapi-i686-pc-windows-gnu 0.4.0
- winapi-x86_64-pc-windows-gnu 0.4.0
- windows-sys 0.34.0
- windows_aarch64_msvc 0.34.0
- windows_i686_gnu 0.34.0
- windows_i686_msvc 0.34.0
- windows_x86_64_gnu 0.34.0
- windows_x86_64_msvc 0.34.0
- 210 dependencies
- maven 3.8.5-openjdk-11 build
- de.tudarmstadt.ukp.dkpro.core:de.tudarmstadt.ukp.dkpro.core.opennlp-asl 1.10.0
- de.tudarmstadt.ukp.dkpro.core:de.tudarmstadt.ukp.dkpro.core.tokit-asl 1.10.0
- org.apache.uima:uimafit-core 2.5.0
- org.apache.uima:uimaj-core 2.11.0
- com.github.texttechnologylab.textimager-uima:textimager-uima-types b10db8275163d19d63b9512cc20ca5872e52499b
- de.tudarmstadt.ukp.dkpro.core:de.tudarmstadt.ukp.dkpro.core.opennlp-asl 1.10.0
- de.tudarmstadt.ukp.dkpro.core:de.tudarmstadt.ukp.dkpro.core.tokit-asl 1.10.0
- org.apache.uima:uimafit-core 2.5.0
- org.apache.uima:uimaj-core 2.11.0
- org.junit.jupiter:junit-jupiter RELEASE compile
- com.amazonaws:aws-java-sdk-bom 1.11.1000 import
- com.amazonaws:aws-java-sdk-s3 1.12.565
- com.arangodb:arangodb-java-driver 6.16.1
- com.arangodb:jackson-dataformat-velocypack 3.0.0
- com.dropbox.core:dropbox-core-sdk 5.4.5
- com.fasterxml.jackson.core:jackson-databind 2.15.2
- com.github.docker-java:docker-java 3.3.1
- com.github.javasync:RxIo 1.1.3
- com.github.luben:zstd-jni 1.4.4-9
- com.github.texttechnologylab.textimager-uima:textimager-uima-io b10db8275163d19d63b9512cc20ca5872e52499b
- com.github.texttechnologylab.textimager-uima:textimager-uima-types 8efebf1980
- com.github.texttechnologylab:UIMATypeSystem 74a8489af5
- com.influxdb:influxdb-client-java 6.9.0
- commons-io:commons-io 2.11.0
- de.tudarmstadt.ukp.dkpro.core:de.tudarmstadt.ukp.dkpro.core.io.text-asl 1.10.0
- de.tudarmstadt.ukp.dkpro.core:de.tudarmstadt.ukp.dkpro.core.opennlp-asl 1.10.0
- de.tudarmstadt.ukp.dkpro.core:de.tudarmstadt.ukp.dkpro.core.tokit-asl 1.10.0
- io.fabric8:kubernetes-client 6.8.0
- io.kubernetes:client-java 15.0.1
- io.socket:socket.io-client 2.0.1
- org.apache.commons:commons-compress 1.21
- org.apache.uima:uimafit-core 2.5.0
- org.apache.uima:uimaj-core 2.11.0
- org.java-websocket:Java-WebSocket 1.5.3
- org.javatuples:javatuples 1.2
- org.json:json 20211205
- org.luaj:luaj-jse 3.0.1
- org.mongodb:mongo-java-driver 3.12.11
- org.mongodb:mongodb-driver-sync 4.10.2
- org.msgpack:msgpack-core 0.9.1
- org.openjdk.nashorn:nashorn-core 15.4
- org.xerial:sqlite-jdbc 3.36.0.3
- xerces:xercesImpl 2.12.2
- de.tudarmstadt.ukp.dkpro.core:de.tudarmstadt.ukp.dkpro.core.opennlp-asl 1.10.0
- de.tudarmstadt.ukp.dkpro.core:de.tudarmstadt.ukp.dkpro.core.tokit-asl 1.10.0
- org.apache.uima:uimafit-core 2.5.0
- org.apache.uima:uimaj-core 2.11.0
- de.tudarmstadt.ukp.dkpro.core:de.tudarmstadt.ukp.dkpro.core.opennlp-asl 1.10.0
- de.tudarmstadt.ukp.dkpro.core:de.tudarmstadt.ukp.dkpro.core.tokit-asl 1.10.0
- org.apache.uima:uimafit-core 2.5.0
- org.apache.uima:uimaj-core 2.11.0
- github-pages >= 0 development
- jekyll-feed ~> 0.6 development
- minima ~> 2.0
- tzinfo ~> 1.2
- tzinfo-data >= 0
- html-proofer ~> 3.0 development
- rubocop-github ~> 0.16 development
- w3c_validators ~> 1.3 development
- jekyll > 3.5, < 5.0
- jekyll-seo-tag ~> 2.0
- kramdown ~> 2.4.0