pyabsa
Sentiment Analysis, Text Classification, Text Augmentation, Text Adversarial defense, etc.;
Science Score: 77.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 4 DOI reference(s) in README -
✓Academic publication links
Links to: acm.org -
✓Committers with academic emails
2 of 15 committers (13.3%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (15.7%) to scientific vocabulary
Keywords
Repository
Sentiment Analysis, Text Classification, Text Augmentation, Text Adversarial defense, etc.;
Basic Info
- Host: GitHub
- Owner: yangheng95
- License: mit
- Language: Jupyter Notebook
- Default Branch: v2
- Homepage: https://pyabsa.readthedocs.io
- Size: 36.8 MB
Statistics
- Stars: 1,051
- Watchers: 12
- Forks: 171
- Open Issues: 65
- Releases: 14
Topics
Metadata Files
README.MD
PyABSA: A Modularized Framework for Reproducible Aspect-based Sentiment Analysis
PyABSA is a modular, reproducible framework for Aspect-based Sentiment Analysis (ABSA) — from research to production. It unifies training/evaluation/inference across ABSA subtasks, ships with ready-to-use checkpoints, and offers dataset tooling and metric visualization.
- 📄 Paper: CIKM 2023 [ACM DL]
- 📚 Docs: https://pyabsa.readthedocs.io/
- 🧪 Examples:
examples-v2/ - 🧰 Dataset hub: ABSADatasets
- 🌐 Online demos: see links below
Getting Started
Welcome to PyABSA! This guide will walk you through the initial steps to get you up and running with the framework.
Prerequisites
Make sure you have Python 3.8 or later installed on your system. You can check your Python version by running:
python --version
Installation
For a straightforward installation, you can use pip:
pip install -U pyabsa
This command installs the core components of PyABSA. For more advanced features like text augmentation and visualization, you may need to install additional dependencies.
Your First Code
After installation, you can start using PyABSA with just a few lines of code. Here’s a simple example to get you started:
python3
from pyabsa import AspectTermExtraction as ATEPC
```python3
Initialize the aspect extractor
aspectextractor = ATEPC.AspectExtractor('multilingual', autodevice=True) ```
```python3
Perform aspect extraction on a sample sentence
result = aspectextractor.predict( ['I love this movie, it is so great!'], saveresult=True, print_result=True ) ```
Features at a Glance
- Unified API for training / evaluation / inference across ABSA tasks
- Model Zoo with
available_checkpoints()and auto-download - Visualization for evaluation metrics
- Human-in-the-loop dataset annotation helpers
- Text augmentation for classification & adversarial defense
- Automatic device selection; simple CPU/GPU switching
See the Introduction for the full feature list.
Supported Tasks
| Task | What it does | Python API entry | Demo |
|--------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| APC (Aspect Polarity Classification) | Classify sentiment for a given aspect | pyabsa.AspectPolarityClassification | Multilingual APC (HF Space) |
| ATEPC (Aspect Term Extraction & Polarity Classification) | Extract aspect terms and their sentiment | pyabsa.AspectTermExtraction | ATEPC (HF Space) |
| ASTE (Aspect Sentiment Triplet Extraction) | Extract (aspect, opinion, sentiment) triplets | pyabsa.AspectSentimentTripletExtraction | Triplet Extraction (HF Space) |
| ASQP / ACOS | Extract (aspect, category, opinion, sentiment) quadruples | pyabsa.AspectCategoryOpinionSentimentTripletExtraction | Quadruple Extraction (HF Space) |
| Others | Text classification, adversarial defense, etc. | pyabsa.TextClassification, pyabsa.TextAdversarialDefense, ... | – |
Full list and
tutorials: Supported Tasks · Tutorials
Installation
PyPI (recommended):
bash
pip install -U pyabsa
From source (latest mainline):
bash
git clone https://github.com/yangheng95/PyABSA --depth=1
cd PyABSA
python setup.py install
Requirements: Python >= 3.8; PyTorch and Transformers will be installed as dependencies. For advanced/optional dependencies (augmentation, visualization, demos), see the Installation guide.
Quickstart
1) Extract aspect terms and classify their sentiments (ATEPC)
```python from pyabsa import AspectTermExtraction as ATEPC, available_checkpoints
View available checkpoints (local + remote)
print(available_checkpoints())
aspectextractor = ATEPC.AspectExtractor( 'multilingual', autodevice=True, # False -> force CPU cal_perplexity=True )
Single instance
aspectextractor.predict( ['I love this movie, it is so great!'], saveresult=True, printresult=True, ignoreerror=True )
Batch inference from a built-in dataset
inferencesource = ATEPC.ATEPCDatasetList.Restaurant16 result = aspectextractor.batchpredict( targetfile=inferencesource, saveresult=True, printresult=True, predsentiment=True ) print(result) ```
2) Aspect-based sentiment classification (APC)
```python from pyabsa import AspectPolarityClassification as APC, available_checkpoints
print(availablecheckpoints(showckpts=True))
classifier = APC.SentimentClassifier( 'multilingual', autodevice=True, calperplexity=True )
classifier.predict( ['I love this movie, it is so great!'], saveresult=True, printresult=True, ignore_error=True )
inferencesource = APC.APCDatasetList.Laptop14 apcresult = classifier.batchpredict( targetfile=inferencesource, saveresult=True, printresult=True, predsentiment=True ) print(apc_result) ```
More examples (training, evaluation, visualization, deployment): see
examples-v2/and Tutorials.
Model Zoo & Checkpoints
- List all available checkpoints:
python from pyabsa import available_checkpoints print(available_checkpoints()) - PyABSA resolves checkpoints across local/remote registries and auto-downloads when needed. See the docs for * CheckpointManager* and API Reference.
Datasets
- Public & community-contributed datasets: ABSADatasets
- To prepare your own datasets (format, semi-automatic annotation, naming conventions), see Integrated Datasets and Notice in the docs.
- You can also use built-in dataset enums (e.g.,
APC.APCDatasetList.Laptop14,ATEPC.ATEPCDatasetList.Restaurant16) to run quick experiments.
Documentation
- Overview & features: Introduction
- Installation & optional components: Installation
- Task tutorials (train/infer/deploy): Tutorials
- API Reference: API Reference
Roadmap (indicative)
- Python 3.13 compatibility verification and wheels
- Extended dataset templates & validators
- Streamlined model registry and checkpoint metadata
- Better Hugging Face integration (Spaces & model cards)
- Optional plugins: advanced augmentation, evaluation dashboards
Have a suggestion? Please open a GitHub Discussion or Issue.
Known Limitations
v2introduced breaking API changes; older scripts may need updates.- Some checkpoints require a one-time download at first use.
- GPU is optional but recommended for training and large-scale inference.
- Certain advanced features have extra dependencies; see the Installation guide.
Citation
If you use PyABSA in your research or products, please cite:
CIKM 2023
bibtex
@inproceedings{YangZL23,
author = {Heng Yang and Chen Zhang and Ke Li},
title = {PyABSA: A Modularized Framework for Reproducible Aspect-based Sentiment Analysis},
booktitle = {Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (CIKM 2023)},
pages = {5117--5122},
year = {2023},
doi = {10.1145/3583780.3614752}
}
arXiv 2022 (optional)
bibtex
@article{YangL22,
author = {Heng Yang and Ke Li},
title = {PyABSA: Open Framework for Aspect-based Sentiment Analysis},
journal = {CoRR},
volume = {abs/2208.01368},
year = {2022},
doi = {10.48550/arXiv.2208.01368}
}
Contributing
Contributions are welcome! You can:
- Share custom datasets via ABSADatasets
- Integrate your models (with or without PyABSA base—we can help adapt)
- Report bugs, improve messages & docs, or add example scripts
- Propose features or refactors
Guidelines
- Use Python 3.8+; please run at least one GPU and one CPU pass for examples before submitting.
- Keep changes reproducible (seeds, configs) and scoped.
- In PR description, summarize motivation and impact.
Community and Support
Join our community to stay updated, ask questions, and contribute to the project.
- GitHub Discussions: For questions, feature requests, and discussions.
- Issue Tracker: To report bugs and track issues.
- Contributing: We welcome contributions! Please see our contributing guidelines for more details.
License
MIT License © PyABSA contributors
Owner
- Name: Heng Yang
- Login: yangheng95
- Kind: user
- Location: Exeter, UK
- Website: https://scholar.google.com/citations?user=NPq5a_0AAAAJ&hl
- Repositories: 10
- Profile: https://github.com/yangheng95
University of Exeter
Citation (CITATION.cff)
# This CITATION.cff file was generated with cffinit.
# Visit https://bit.ly/cffinit to generate yours today!
cff-version: 1.2.0
title: >-
PyABSA - Open Framework for Aspect-based Sentiment
Analysis
message: 'https://github.com/yangheng95/PyABSA'
type: software
authors:
- given-names: HENG
name-particle: YANG
email: hy345@exeter.ac.uk
affiliation: University of Exeter
orcid: 'https://orcid.org/0000-0002-6831-196X'
GitHub Events
Total
- Issues event: 4
- Watch event: 105
- Issue comment event: 9
- Push event: 271
- Pull request event: 4
- Fork event: 11
Last Year
- Issues event: 4
- Watch event: 105
- Issue comment event: 9
- Push event: 271
- Pull request event: 4
- Fork event: 11
Committers
Last synced: almost 3 years ago
All Time
- Total Commits: 711
- Total Committers: 15
- Avg Commits per committer: 47.4
- Development Distribution Score (DDS): 0.53
Top Committers
| Name | Commits | |
|---|---|---|
| yangheng95 | y****g@m****n | 334 |
| Yang Heng | y****5@1****m | 235 |
| yangheng | h****5@e****k | 63 |
| XuMayi | 1****9@1****m | 27 |
| YangHeng | 5****5@u****m | 20 |
| allcontributors[bot] | 4****]@u****m | 12 |
| lpfy | l****y@m****m | 5 |
| jackie | j****l@1****m | 4 |
| george.pan | g****n@u****m | 3 |
| kmywykajps6q7ulgikxm5m56mhmlxi3rbasjl3tnglmos46ywmvq | b****s@l****n | 2 |
| XuMayi | 5****i@u****m | 2 |
| 杨恒 | y****g@y****l | 1 |
| Ryan | 2****5@q****m | 1 |
| 杨恒 | y****g@y****n | 1 |
| brieucdandin | b****1@g****m | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 151
- Total pull requests: 38
- Average time to close issues: 11 days
- Average time to close pull requests: about 5 hours
- Total issue authors: 100
- Total pull request authors: 5
- Average comments per issue: 3.4
- Average comments per pull request: 0.71
- Merged pull requests: 30
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 4
- Pull requests: 4
- Average time to close issues: N/A
- Average time to close pull requests: 3 minutes
- Issue authors: 4
- Pull request authors: 2
- Average comments per issue: 0.25
- Average comments per pull request: 0.5
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- ningmiaokai (7)
- christianjosef27 (4)
- LaurentVeyssier (4)
- Winnieliu0504 (4)
- yaoysyao (3)
- KadriMufti (3)
- Kensvin28 (3)
- BBabuRAA (3)
- combokang (3)
- ImSanjayChintha (3)
- lisabecker-ml6 (2)
- cheemsbaby (2)
- Jai-Agarwal-04 (2)
- karimmahalian (2)
- BLM3826 (2)
Pull Request Authors
- yangheng95 (30)
- boba-and-beer (2)
- surabhiwaingankar (2)
- brightgems (2)
- christianjosef27 (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 4,629 last-month
- Total docker downloads: 45
- Total dependent packages: 1
- Total dependent repositories: 4
- Total versions: 234
- Total maintainers: 1
pypi.org: pyabsa
This tool provides the state-of-the-art models for aspect term extraction (ATE), aspect polarity classification (APC), and text classification (TC).
- Homepage: https://github.com/yangheng95/PyABSA
- Documentation: https://pyabsa.readthedocs.io/
- License: MIT
-
Latest release: 2.4.3
published 6 months ago
Rankings
Maintainers (1)
Dependencies
- actions/checkout v3 composite
- actions/setup-python v3 composite
- Cython *
- Sphinx *
- autocuda *
- boostaug *
- findfile *
- gitpython *
- ipykernel *
- ipython *
- ipython-genutils *
- ipywidgets *
- metric-visualizer *
- nbclient *
- nbconvert *
- nbsphinx *
- networkx *
- pyabsa *
- pytorch_warmup *
- recommonmark *
- scipy *
- sentencepiece *
- seqeval *
- spacy *
- sphinx-autoapi *
- sphinx-autobuild *
- sphinx-copybutton *
- sphinx-markdown-tables *
- sphinx-rtd-theme *
- sphinxcontrib-applehelp *
- sphinxcontrib-devhelp *
- sphinxcontrib-htmlhelp *
- sphinxcontrib-jsmath *
- sphinxcontrib-qthelp *
- sphinxcontrib-serializinghtml *
- sqlitedict *
- stanza *
- tensorboard-data-server *
- tensorboard-plugin-wit *
- termcolor *
- torch *
- tqdm *
- transformers *
- typing_extensions *
- update-checker *
- widgetsnbextension *
- arxiv *
- autocuda *
- boostaug *
- datasets *
- findfile *
- gensim *
- gitpython *
- gradio *
- metric-visualizer *
- networkx *
- nlpaug *
- nltk *
- numpy *
- packaging *
- pandas *
- protobuf <4.0.0
- pyabsa *
- pytorch_warmup *
- requests *
- scikit-learn *
- sentencepiece *
- seqeval *
- setuptools *
- spacy *
- tensorflow *
- tensorflow_hub *
- termcolor *
- tokenizers *
- torch >1.0.0
- tqdm *
- transformers *
- typing_extensions *
- update-checker *
- autocuda >=0.16
- boostaug >=2.3.5
- findfile >=2.0.0
- gitpython *
- metric-visualizer >=0.9.6
- networkx *
- pandas *
- protobuf <4.0.0
- pytorch_warmup *
- sentencepiece *
- seqeval *
- spacy *
- termcolor *
- torch >=1.0.0
- tqdm *
- transformers >=4.29.0
- typing_extensions *
- update-checker *
- actions/checkout v2.3.4 composite
- actions/github-script v3.1.0 composite
- peaceiris/actions-gh-pages v3 composite
- peaceiris/actions-gh-pages v3.7.3 composite
- yi-Xu-0100/traffic-to-badge v1.4.0 composite
- python 3.9.*
- pytorch
- pytorch-cuda