diffusers

🤗 Diffusers: State-of-the-art diffusion models for image, video, and audio generation in PyTorch.

https://github.com/huggingface/diffusers

Science Score: 54.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
    37 of 922 committers (4.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (15.5%) to scientific vocabulary

Keywords

deep-learning diffusion flux image-generation image2image image2video latent-diffusion-models pytorch qwen-image score-based-generative-modeling stable-diffusion stable-diffusion-diffusers text2image text2video video2video

Keywords from Contributors

transformers jax pretrained-models audio deepseek gemma qwen vlm glm model-hub
Last synced: 6 months ago · JSON representation ·

Repository

🤗 Diffusers: State-of-the-art diffusion models for image, video, and audio generation in PyTorch.

Basic Info
Statistics
  • Stars: 30,596
  • Watchers: 220
  • Forks: 6,284
  • Open Issues: 798
  • Releases: 86
Topics
deep-learning diffusion flux image-generation image2image image2video latent-diffusion-models pytorch qwen-image score-based-generative-modeling stable-diffusion stable-diffusion-diffusers text2image text2video video2video
Created over 3 years ago · Last pushed 6 months ago
Metadata Files
Readme Contributing License Code of conduct Citation

README.md



GitHub GitHub release GitHub release Contributor Covenant X account

🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, 🤗 Diffusers is a modular toolbox that supports both. Our library is designed with a focus on usability over performance, simple over easy, and customizability over abstractions.

🤗 Diffusers offers three core components:

  • State-of-the-art diffusion pipelines that can be run in inference with just a few lines of code.
  • Interchangeable noise schedulers for different diffusion speeds and output quality.
  • Pretrained models that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems.

Installation

We recommend installing 🤗 Diffusers in a virtual environment from PyPI or Conda. For more details about installing PyTorch, please refer to their official documentation.

PyTorch

With pip (official package):

bash pip install --upgrade diffusers[torch]

With conda (maintained by the community):

sh conda install -c conda-forge diffusers

Apple Silicon (M1/M2) support

Please refer to the How to use Stable Diffusion in Apple Silicon guide.

Quickstart

Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the from_pretrained method to load any pretrained diffusion model (browse the Hub for 30,000+ checkpoints):

```python from diffusers import DiffusionPipeline import torch

pipeline = DiffusionPipeline.frompretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torchdtype=torch.float16) pipeline.to("cuda") pipeline("An image of a squirrel in Picasso style").images[0] ```

You can also dig into the models and schedulers toolbox to build your own diffusion system:

```python from diffusers import DDPMScheduler, UNet2DModel from PIL import Image import torch

scheduler = DDPMScheduler.frompretrained("google/ddpm-cat-256") model = UNet2DModel.frompretrained("google/ddpm-cat-256").to("cuda") scheduler.set_timesteps(50)

samplesize = model.config.samplesize noise = torch.randn((1, 3, samplesize, samplesize), device="cuda") input = noise

for t in scheduler.timesteps: with torch.nograd(): noisyresidual = model(input, t).sample prevnoisysample = scheduler.step(noisyresidual, t, input).prevsample input = prevnoisysample

image = (input / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy()[0] image = Image.fromarray((image * 255).round().astype("uint8")) image ```

Check out the Quickstart to launch your diffusion journey today!

How to navigate the documentation

| Documentation | What can I learn? | |---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Tutorial | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. | | Loading | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. | | Pipelines for inference | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. | | Optimization | Guides for how to optimize your diffusion model to run faster and consume less memory. | | Training | Guides for how to train a diffusion model for different tasks with different training techniques. |

Contribution

We ❤️ contributions from the open-source community! If you want to contribute to this library, please check out our Contribution guide. You can look out for issues you'd like to tackle to contribute to the library. - See Good first issues for general opportunities to contribute - See New model/pipeline to contribute exciting new diffusion models / diffusion pipelines - See New scheduler

Also, say 👋 in our public Discord channel Join us on Discord. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or just hang out ☕.

Popular Tasks & Pipelines

Task Pipeline 🤗 Hub
Unconditional Image Generation DDPM google/ddpm-ema-church-256
Text-to-Image Stable Diffusion Text-to-Image stable-diffusion-v1-5/stable-diffusion-v1-5
Text-to-Image unCLIP kakaobrain/karlo-v1-alpha
Text-to-Image DeepFloyd IF DeepFloyd/IF-I-XL-v1.0
Text-to-Image Kandinsky kandinsky-community/kandinsky-2-2-decoder
Text-guided Image-to-Image ControlNet lllyasviel/sd-controlnet-canny
Text-guided Image-to-Image InstructPix2Pix timbrooks/instruct-pix2pix
Text-guided Image-to-Image Stable Diffusion Image-to-Image stable-diffusion-v1-5/stable-diffusion-v1-5
Text-guided Image Inpainting Stable Diffusion Inpainting runwayml/stable-diffusion-inpainting
Image Variation Stable Diffusion Image Variation lambdalabs/sd-image-variations-diffusers
Super Resolution Stable Diffusion Upscale stabilityai/stable-diffusion-x4-upscaler
Super Resolution Stable Diffusion Latent Upscale stabilityai/sd-x2-latent-upscaler

Popular libraries using 🧨 Diffusers

  • https://github.com/microsoft/TaskMatrix
  • https://github.com/invoke-ai/InvokeAI
  • https://github.com/InstantID/InstantID
  • https://github.com/apple/ml-stable-diffusion
  • https://github.com/Sanster/lama-cleaner
  • https://github.com/IDEA-Research/Grounded-Segment-Anything
  • https://github.com/ashawkey/stable-dreamfusion
  • https://github.com/deep-floyd/IF
  • https://github.com/bentoml/BentoML
  • https://github.com/bmaltais/kohya_ss
  • +14,000 other amazing GitHub repositories 💪

Thank you for using us ❤️.

Credits

This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:

  • @CompVis' latent diffusion models library, available here
  • @hojonathanho original DDPM implementation, available here as well as the extremely useful translation into PyTorch by @pesser, available here
  • @ermongroup's DDIM implementation, available here
  • @yang-song's Score-VE and Score-VP implementations, available here

We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available here as well as @crowsonkb and @rromb for useful discussions and insights.

Citation

bibtex @misc{von-platen-etal-2022-diffusers, author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Dhruv Nair and Sayak Paul and William Berman and Yiyi Xu and Steven Liu and Thomas Wolf}, title = {Diffusers: State-of-the-art diffusion models}, year = {2022}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/huggingface/diffusers}} }

Owner

  • Name: Hugging Face
  • Login: huggingface
  • Kind: organization
  • Location: NYC + Paris

The AI community building the future.

Citation (CITATION.cff)

cff-version: 1.2.0
title: 'Diffusers: State-of-the-art diffusion models'
message: >-
  If you use this software, please cite it using the
  metadata from this file.
type: software
authors:
  - given-names: Patrick
    family-names: von Platen
  - given-names: Suraj
    family-names: Patil
  - given-names: Anton
    family-names: Lozhkov
  - given-names: Pedro
    family-names: Cuenca
  - given-names: Nathan
    family-names: Lambert
  - given-names: Kashif
    family-names: Rasul
  - given-names: Mishig
    family-names: Davaadorj
  - given-names: Dhruv
    family-names: Nair
  - given-names: Sayak
    family-names: Paul
  - given-names: Steven
    family-names: Liu
  - given-names: William
    family-names: Berman
  - given-names: Yiyi
    family-names: Xu
  - given-names: Thomas
    family-names: Wolf
repository-code: 'https://github.com/huggingface/diffusers'
abstract: >-
  Diffusers provides pretrained diffusion models across
  multiple modalities, such as vision and audio, and serves
  as a modular toolbox for inference and training of
  diffusion models.
keywords:
  - deep-learning
  - pytorch
  - image-generation
  - hacktoberfest
  - diffusion
  - text2image
  - image2image
  - score-based-generative-modeling
  - stable-diffusion
  - stable-diffusion-diffusers
license: Apache-2.0
version: 0.12.1

Committers

Last synced: 9 months ago

All Time
  • Total Commits: 5,334
  • Total Committers: 922
  • Avg Commits per committer: 5.785
  • Development Distribution Score (DDS): 0.826
Past Year
  • Commits: 1,377
  • Committers: 316
  • Avg Commits per committer: 4.358
  • Development Distribution Score (DDS): 0.794
Top Committers
Name Email Commits
Patrick von Platen p****n@g****m 928
Sayak Paul s****l@g****m 647
Suraj Patil s****5@g****m 276
Dhruv Nair d****r@g****m 259
Anton Lozhkov a****n@h****o 211
YiYi Xu y****0@g****m 188
Aryan a****n@h****o 154
Pedro Cuenca p****o@h****o 151
Steven Liu 5****u 149
Will Berman w****n@g****m 123
hlky h****y@h****c 111
M. Tolga Cangöz 4****I 76
Linoy Tsaban 5****n 55
Kashif Rasul k****l@g****m 50
dg845 5****5 30
Álvaro Somoza a****a 29
Yao Matrix m****o@i****m 27
apolinário j****s@g****m 26
Nathan Lambert n****n@h****o 26
Lucain l****p@g****m 24
Younes Belkada 4****a 23
Tolga Cangöz 4****z 23
Haofan Wang h****i@g****m 21
Vinh H. Pham p****7@g****m 20
SahilCarterr 1****r 19
Parag Ekbote t****9@g****m 18
Junsong Chen c****7@i****m 18
Bagheera 5****a 18
Mishig Davaadorj m****j@c****u 17
Beinsezii 3****i 15
and 892 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 3,279
  • Total pull requests: 5,867
  • Average time to close issues: about 2 months
  • Average time to close pull requests: 13 days
  • Total issue authors: 1,720
  • Total pull request authors: 894
  • Average comments per issue: 4.34
  • Average comments per pull request: 3.74
  • Merged pull requests: 3,838
  • Bot issues: 0
  • Bot pull requests: 26
Past Year
  • Issues: 941
  • Pull requests: 2,516
  • Average time to close issues: 13 days
  • Average time to close pull requests: 8 days
  • Issue authors: 563
  • Pull request authors: 364
  • Average comments per issue: 2.38
  • Average comments per pull request: 3.14
  • Merged pull requests: 1,573
  • Bot issues: 0
  • Bot pull requests: 18
Top Authors
Issue Authors
  • ghost (149)
  • sayakpaul (93)
  • vladmandic (53)
  • nitinmukesh (48)
  • tin2tin (41)
  • patrickvonplaten (37)
  • bghira (32)
  • yiyixuxu (29)
  • alexblattner (28)
  • a-r-r-o-w (26)
  • clarencechen (18)
  • christopher5106 (18)
  • apolinario (18)
  • AmericanPresidentJimmyCarter (16)
  • SDD445 (15)
Pull Request Authors
  • sayakpaul (1,066)
  • DN6 (419)
  • a-r-r-o-w (399)
  • yiyixuxu (282)
  • hlky (229)
  • stevhliu (181)
  • patrickvonplaten (111)
  • linoytsaban (102)
  • standardAI (74)
  • tolgacangoz (65)
  • yao-matrix (62)
  • asomoza (57)
  • dg845 (52)
  • lawrence-cj (48)
  • bghira (37)
Top Labels
Issue Labels
bug (1,643) stale (850) contributions-welcome (107) Good second issue (47) good first issue (43) help wanted (39) New pipeline/model (34) community-examples (32) wip (28) hacktoberfest (17) enhancement (15) scheduler (15) training (13) lora (8) needs-code-example (7) single_file (7) roadmap (7) question (6) advanced (6) SD.Next (5) quantization (4) New scheduler (4) IPAdapter (4) peft (3) consider-for-modular-diffusers (3) inpainting (3) Good Example PR (2) performance (2) should-move-to-discussion (2) close-to-merge (1)
Pull Request Labels
stale (364) close-to-merge (145) roadmap (130) refactor (42) dependencies (26) torch.compile (25) scheduler (19) performance (19) wip (18) Good Example PR (17) lora (17) PAG (16) python (14) training (13) quantization (13) bug (10) contributions-welcome (7) video (5) consider-for-modular-diffusers (4) single_file (4) help wanted (3) ONNX (3) IPAdapter (2) documentation (2) peft (2) need-test (2) advanced (2) New pipeline/model (1) observability (1) jax/flax (1)

Packages

  • Total packages: 8
  • Total downloads:
    • pypi 4,245,540 last-month
  • Total docker downloads: 312,393
  • Total dependent packages: 189
    (may contain duplicates)
  • Total dependent repositories: 5,177
    (may contain duplicates)
  • Total versions: 213
  • Total maintainers: 6
pypi.org: diffusers

State-of-the-art diffusion in PyTorch and JAX.

  • Versions: 93
  • Dependent Packages: 187
  • Dependent Repositories: 5,162
  • Downloads: 4,245,498 Last month
  • Docker Downloads: 312,393
Rankings
Forks count: 0.1%
Stargazers count: 0.1%
Dependent repos count: 0.1%
Dependent packages count: 0.2%
Downloads: 0.2%
Average: 0.4%
Docker downloads count: 1.4%
Maintainers (4)
Last synced: 6 months ago
proxy.golang.org: github.com/huggingface/diffusers
  • Versions: 87
  • Dependent Packages: 0
  • Dependent Repositories: 1
Rankings
Forks count: 0.1%
Stargazers count: 0.5%
Average: 3.7%
Dependent repos count: 4.7%
Dependent packages count: 9.6%
Last synced: 6 months ago
pypi.org: diffusers-qaic

State-of-the-art diffusion in PyTorch and JAX.

  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 14 Last month
Rankings
Forks count: 0.2%
Stargazers count: 0.2%
Dependent packages count: 9.9%
Average: 16.6%
Dependent repos count: 55.9%
Maintainers (1)
Last synced: 6 months ago
conda-forge.org: diffusers

:hugs: Diffusers provides pretrained diffusion models across multiple modalities, such as vision and audio, and serves as a modular toolbox for inference and training of diffusion models. PyPI: [https://pypi.org/project/diffusers/](https://pypi.org/project/diffusers/)

  • Versions: 13
  • Dependent Packages: 0
  • Dependent Repositories: 7
Rankings
Forks count: 2.2%
Stargazers count: 2.4%
Dependent repos count: 12.9%
Average: 17.3%
Dependent packages count: 51.6%
Last synced: 6 months ago
pypi.org: soujpg-diffusers

State-of-the-art diffusion in PyTorch and JAX.

  • Versions: 6
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 28 Last month
Rankings
Forks count: 0.1%
Stargazers count: 0.2%
Dependent packages count: 10.0%
Average: 19.0%
Dependent repos count: 65.8%
Maintainers (1)
Last synced: 6 months ago
anaconda.org: diffusers-torch

:hugs: Diffusers provides pretrained diffusion models across multiple modalities, such as vision and audio, and serves as a modular toolbox for inference and training of diffusion models. PyPI: [https://pypi.org/project/diffusers/](https://pypi.org/project/diffusers/)

  • Versions: 4
  • Dependent Packages: 1
  • Dependent Repositories: 0
Rankings
Stargazers count: 8.3%
Forks count: 8.6%
Dependent packages count: 20.5%
Average: 23.7%
Dependent repos count: 57.7%
Last synced: 6 months ago
anaconda.org: diffusers-base

:hugs: Diffusers provides pretrained diffusion models across multiple modalities, such as vision and audio, and serves as a modular toolbox for inference and training of diffusion models. PyPI: [https://pypi.org/project/diffusers/](https://pypi.org/project/diffusers/)

  • Versions: 4
  • Dependent Packages: 1
  • Dependent Repositories: 0
Rankings
Stargazers count: 8.3%
Forks count: 8.6%
Dependent packages count: 20.5%
Average: 23.7%
Dependent repos count: 57.7%
Last synced: 6 months ago
anaconda.org: diffusers

:hugs: Diffusers provides pretrained diffusion models across multiple modalities, such as vision and audio, and serves as a modular toolbox for inference and training of diffusion models. PyPI: [https://pypi.org/project/diffusers/](https://pypi.org/project/diffusers/)

  • Versions: 4
  • Dependent Packages: 0
  • Dependent Repositories: 7
Rankings
Forks count: 6.3%
Stargazers count: 6.7%
Average: 26.2%
Dependent repos count: 40.7%
Dependent packages count: 51.2%
Last synced: 6 months ago

Dependencies

.github/actions/setup-miniconda/action.yml actions
  • actions/cache v2 composite
.github/workflows/build_docker_images.yml actions
  • actions/checkout v3 composite
  • docker/build-push-action v3 composite
  • docker/login-action v2 composite
.github/workflows/build_documentation.yml actions
.github/workflows/build_pr_documentation.yml actions
.github/workflows/delete_doc_comment.yml actions
.github/workflows/delete_doc_comment_trigger.yml actions
.github/workflows/nightly_tests.yml actions
  • ./.github/actions/setup-miniconda * composite
  • actions/checkout v3 composite
  • actions/upload-artifact v2 composite
.github/workflows/pr_dependency_test.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/pr_quality.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/pr_tests.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v2 composite
.github/workflows/push_tests.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v2 composite
.github/workflows/push_tests_fast.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v2 composite
.github/workflows/push_tests_mps.yml actions
  • ./.github/actions/setup-miniconda * composite
  • actions/checkout v3 composite
  • actions/upload-artifact v2 composite
.github/workflows/stale.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v1 composite
.github/workflows/typos.yml actions
  • actions/checkout v3 composite
  • crate-ci/typos v1.12.4 composite
.github/workflows/upload_pr_documentation.yml actions
docker/diffusers-flax-cpu/Dockerfile docker
  • ubuntu 20.04 build
docker/diffusers-flax-tpu/Dockerfile docker
  • ubuntu 20.04 build
docker/diffusers-onnxruntime-cpu/Dockerfile docker
  • ubuntu 20.04 build
docker/diffusers-onnxruntime-cuda/Dockerfile docker
  • nvidia/cuda 11.6.2-cudnn8-devel-ubuntu20.04 build
docker/diffusers-pytorch-cpu/Dockerfile docker
  • ubuntu 20.04 build
docker/diffusers-pytorch-cuda/Dockerfile docker
  • nvidia/cuda 11.7.1-cudnn8-runtime-ubuntu20.04 build
examples/controlnet/requirements.txt pypi
  • accelerate >=0.16.0
  • datasets *
  • ftfy *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
examples/controlnet/requirements_flax.txt pypi
  • Jinja2 *
  • datasets *
  • flax *
  • ftfy *
  • optax *
  • tensorboard *
  • torch *
  • torchvision *
  • transformers >=4.25.1
examples/controlnet/requirements_sdxl.txt pypi
  • Jinja2 *
  • accelerate >=0.16.0
  • datasets *
  • ftfy *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
  • wandb *
examples/custom_diffusion/requirements.txt pypi
  • Jinja2 *
  • accelerate *
  • ftfy *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
examples/dreambooth/requirements.txt pypi
  • Jinja2 *
  • accelerate >=0.16.0
  • ftfy *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
examples/dreambooth/requirements_flax.txt pypi
  • Jinja2 *
  • flax *
  • ftfy *
  • optax *
  • tensorboard *
  • torch *
  • torchvision *
  • transformers >=4.25.1
examples/dreambooth/requirements_sdxl.txt pypi
  • Jinja2 *
  • accelerate >=0.16.0
  • ftfy *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
examples/instruct_pix2pix/requirements.txt pypi
  • accelerate >=0.16.0
  • datasets *
  • ftfy *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
examples/kandinsky2_2/text_to_image/requirements.txt pypi
  • Jinja2 *
  • accelerate >=0.16.0
  • datasets *
  • ftfy *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
examples/research_projects/colossalai/requirement.txt pypi
  • Jinja2 *
  • diffusers *
  • ftfy *
  • tensorboard *
  • torch *
  • torchvision *
  • transformers *
examples/research_projects/dreambooth_inpaint/requirements.txt pypi
  • Jinja2 *
  • accelerate >=0.16.0
  • diffusers ==0.9.0
  • ftfy *
  • tensorboard *
  • torchvision *
  • transformers >=4.21.0
examples/research_projects/intel_opts/textual_inversion/requirements.txt pypi
  • Jinja2 *
  • accelerate >=0.16.0
  • ftfy *
  • intel_extension_for_pytorch >=1.13
  • tensorboard *
  • torchvision *
  • transformers >=4.21.0
examples/research_projects/intel_opts/textual_inversion_dfq/requirements.txt pypi
  • accelerate *
  • ftfy *
  • modelcards *
  • neural-compressor *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.0
examples/research_projects/lora/requirements.txt pypi
  • Jinja2 *
  • accelerate >=0.16.0
  • datasets *
  • ftfy *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
examples/research_projects/mulit_token_textual_inversion/requirements.txt pypi
  • Jinja2 *
  • accelerate >=0.16.0
  • ftfy *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
examples/research_projects/mulit_token_textual_inversion/requirements_flax.txt pypi
  • Jinja2 *
  • flax *
  • ftfy *
  • optax *
  • tensorboard *
  • torch *
  • torchvision *
  • transformers >=4.25.1
examples/research_projects/multi_subject_dreambooth/requirements.txt pypi
  • Jinja2 *
  • accelerate >=0.16.0
  • ftfy *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
examples/research_projects/onnxruntime/text_to_image/requirements.txt pypi
  • accelerate >=0.16.0
  • datasets *
  • ftfy *
  • modelcards *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
examples/research_projects/onnxruntime/textual_inversion/requirements.txt pypi
  • accelerate >=0.16.0
  • ftfy *
  • modelcards *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
examples/research_projects/onnxruntime/unconditional_image_generation/requirements.txt pypi
  • accelerate >=0.16.0
  • datasets *
  • tensorboard *
  • torchvision *
examples/t2i_adapter/requirements.txt pypi
  • accelerate >=0.16.0
  • datasets *
  • ftfy *
  • safetensors *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
  • wandb *
examples/text_to_image/requirements.txt pypi
  • Jinja2 *
  • accelerate >=0.16.0
  • datasets *
  • ftfy *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
examples/text_to_image/requirements_flax.txt pypi
  • Jinja2 *
  • datasets *
  • flax *
  • ftfy *
  • optax *
  • tensorboard *
  • torch *
  • torchvision *
  • transformers >=4.25.1
examples/text_to_image/requirements_sdxl.txt pypi
  • Jinja2 *
  • accelerate >=0.22.0
  • ftfy *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
examples/textual_inversion/requirements.txt pypi
  • Jinja2 *
  • accelerate >=0.16.0
  • ftfy *
  • tensorboard *
  • torchvision *
  • transformers >=4.25.1
examples/textual_inversion/requirements_flax.txt pypi
  • Jinja2 *
  • flax *
  • ftfy *
  • optax *
  • tensorboard *
  • torch *
  • torchvision *
  • transformers >=4.25.1
examples/unconditional_image_generation/requirements.txt pypi
  • accelerate >=0.16.0
  • datasets *
  • torchvision *
pyproject.toml pypi
setup.py pypi
  • deps *