licenta_fmi_2024_dnsanomaly
Lucrare de licenta - 2024
Science Score: 44.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (3.8%) to scientific vocabulary
Keywords
Repository
Lucrare de licenta - 2024
Basic Info
Statistics
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
- Releases: 1
Topics
Metadata Files
README.md
Bachelor's Thesis (Romanian language repo)
Daca folositi acest repo sau lucrarea de licenta, va rog sa citati folosind butonul de citare din interfata Github sau sa respectati instructiunile din fisierul CITATION.cff
Detectia anomaliilor in traficul DNS
Licenta FMI 2024 - Florin Silviu Dinu
Dataset
Directorul data contine subdirectoare cu fisiere README.md pentru preluarea datasetului din sursele oficiale. Acesta nu poate fi incarcat ca atare intrucat nu detin drepturile, dar este mentionat cu referintele corespunzatoare in lucrare.
Lista dataseturilor folosite: * Preia datasetul CICBellEXFDNS2021 de la: https://www.unb.ca/cic/datasets/dns-exf-2021.html * Preia top 1.000.000 domenii de la: https://www.crawlson.com/domains * Preia lista de SLD-uri de la: https://github.com/gavingmiller/second-level-domains
Pentru datasetul CICBellEXFDNS2021 trebuie mentionata si urmatoarea lucrare: * Samaneh Mahdavifar, Amgad Hanafy Salem, Princy Victor, Miguel Garzon, Amir H. Razavi, Natasha Hellberg, Arash Habibi Lashkari, “Lightweight Hybrid Detection of Data Exfiltration using DNS based on Machine Learning”, The 11th IEEE International Conference on Communication and Network Security (ICCNS), Dec. 3-5, 2021, Beijing Jiaotong University, Weihai, China.
Textul lucrarii
In sectiunea Releases: https://github.com/fredtux/LicentaFMI2024_DNSAnomaly/releases/tag/v1.0
Licenta
Acesta lucrare este licentiata sub Creative Commons Attribution 4.0 International License.

Owner
- Name: Florin Dinu
- Login: fredtux
- Kind: user
- Company: Student - University of Bucharest
- Website: https://fredtux.github.io/online-cv/
- Repositories: 5
- Profile: https://github.com/fredtux
Citation (CITATION.cff)
cff-version: 1.2.0
message: "If you use this software or thesis, please cite it as below."
type: thesis
thesis-type: Bachelor
authors:
- family-names: "Dinu"
given-names: "Florin-Silviu"
title: "Detecția anomaliilor în traficul DNS"
version: 1.0.0
year: 2024
institution:
- name: "Universitatea din București"
- city: "București"
- country: "RO"
department: "Facultatea de Matematică și Informatică"
keywords:
- anomaly detection
- dns exfiltration
- information systems security
- machine learning
- computer networks
license: "CC-BY-4.0"
url: "https://github.com/fredtux/Licenta_FMI_2024_DNSAnomaly"
date-released: 2024-06-04
language: "ro"
coordinators:
- family-names: "Irofti"
given-names: "Paul"
GitHub Events
Total
- Watch event: 1
Last Year
- Watch event: 1
Issues and Pull Requests
Last synced: 8 months ago
All Time
- Total issues: 0
- Total pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Total issue authors: 0
- Total pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- Jinja2 ==3.1.4
- MarkupSafe ==2.1.5
- Pygments ==2.18.0
- asttokens ==2.4.1
- cmdstanpy ==1.2.2
- comm ==0.2.2
- contourpy ==1.2.1
- cycler ==0.12.1
- debugpy ==1.8.1
- decorator ==5.1.1
- exceptiongroup ==1.2.1
- executing ==2.0.1
- filelock ==3.14.0
- fonttools ==4.51.0
- fsspec ==2024.5.0
- holidays ==0.49
- importlib_resources ==6.4.0
- ipykernel ==6.29.4
- ipython ==8.24.0
- jedi ==0.19.1
- joblib ==1.4.2
- jupyter_client ==8.6.2
- jupyter_core ==5.7.2
- kiwisolver ==1.4.5
- matplotlib ==3.9.0
- matplotlib-inline ==0.1.7
- mpmath ==1.3.0
- nest-asyncio ==1.6.0
- networkx ==3.3
- numpy ==1.26.4
- nvidia-cublas-cu12 ==12.1.3.1
- nvidia-cuda-cupti-cu12 ==12.1.105
- nvidia-cuda-nvrtc-cu12 ==12.1.105
- nvidia-cuda-runtime-cu12 ==12.1.105
- nvidia-cudnn-cu12 ==8.9.2.26
- nvidia-cufft-cu12 ==11.0.2.54
- nvidia-curand-cu12 ==10.3.2.106
- nvidia-cusolver-cu12 ==11.4.5.107
- nvidia-cusparse-cu12 ==12.1.0.106
- nvidia-nccl-cu12 ==2.20.5
- nvidia-nvjitlink-cu12 ==12.4.127
- nvidia-nvtx-cu12 ==12.1.105
- packaging ==24.0
- pandas ==2.2.2
- parso ==0.8.4
- pexpect ==4.9.0
- pillow ==10.3.0
- platformdirs ==4.2.2
- prompt-toolkit ==3.0.43
- prophet ==1.1.5
- psutil ==5.9.8
- ptyprocess ==0.7.0
- pure-eval ==0.2.2
- pyparsing ==3.1.2
- python-dateutil ==2.9.0.post0
- pytz ==2024.1
- pyzmq ==26.0.3
- scapy ==2.5.0
- scikit-learn ==1.4.2
- scipy ==1.13.0
- six ==1.16.0
- stack-data ==0.6.3
- stanio ==0.5.0
- sympy ==1.12
- threadpoolctl ==3.5.0
- torch ==2.3.0
- tornado ==6.4
- tqdm ==4.66.4
- traitlets ==5.14.3
- triton ==2.3.0
- typing_extensions ==4.11.0
- tzdata ==2024.1
- wcwidth ==0.2.13