braindecode

Deep learning software to decode EEG, ECG or MEG signals

https://github.com/braindecode/braindecode

Science Score: 59.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 7 DOI reference(s) in README
  • Academic publication links
    Links to: frontiersin.org
  • Committers with academic emails
    8 of 52 committers (15.4%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (15.6%) to scientific vocabulary

Keywords

deep-learning ecog eeg electrocorticography electroencephalogram electroencephalography magnetoencephalography meg neuroimaging neuroscience python pytorch

Keywords from Contributors

bci bci-benchmarks brain-computer-interface wasserstein-barycenter domain-adaptation bids sklearn data-shift wasserstein-discriminant-analysis wasserstein
Last synced: 6 months ago · JSON representation

Repository

Deep learning software to decode EEG, ECG or MEG signals

Basic Info
  • Host: GitHub
  • Owner: braindecode
  • License: bsd-3-clause
  • Language: Python
  • Default Branch: master
  • Homepage: https://braindecode.org/
  • Size: 17.6 MB
Statistics
  • Stars: 990
  • Watchers: 20
  • Forks: 220
  • Open Issues: 81
  • Releases: 8
Topics
deep-learning ecog eeg electrocorticography electroencephalogram electroencephalography magnetoencephalography meg neuroimaging neuroscience python pytorch
Created about 6 years ago · Last pushed 6 months ago
Metadata Files
Readme Contributing License

README.rst

.. image:: https://badges.gitter.im/braindecodechat/community.svg
   :alt: Join the chat at https://gitter.im/braindecodechat/community
   :target: https://gitter.im/braindecodechat/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge

.. image:: https://github.com/braindecode/braindecode/workflows/docs/badge.svg
   :target: https://github.com/braindecode/braindecode/actions

.. image:: https://circleci.com/gh/braindecode/braindecode.svg?style=svg
   :target: https://circleci.com/gh/braindecode/braindecode
   :alt: Doc build on CircleCI

.. image:: https://codecov.io/gh/braindecode/braindecode/branch/master/graph/badge.svg
   :target: https://codecov.io/gh/braindecode/braindecode
   :alt: Code Coverage

.. |Braindecode| image:: https://user-images.githubusercontent.com/42702466/177958779-b00628aa-9155-4c51-96d1-d8c345aff575.svg
.. _braindecode: braindecode.org/

Braindecode
===========

Braindecode is an open-source Python toolbox for decoding raw electrophysiological brain
data with deep learning models. It includes dataset fetchers, data preprocessing and
visualization tools, as well as implementations of several deep learning
architectures and data augmentations for analysis of EEG, ECoG and MEG.

For neuroscientists who want to work with deep learning and
deep learning researchers who want to work with neurophysiological data.


Installation Braindecode
========================

1. Install pytorch from http://pytorch.org/ (you don't need to install torchvision).

2. If you want to download EEG datasets from `MOABB `_, install it:

.. code-block:: bash

  pip install moabb

3. Install latest release of braindecode via pip:

.. code-block:: bash

  pip install braindecode

If you want to install the latest development version of braindecode, please refer to `contributing page `__


Documentation
=============

Documentation is online under https://braindecode.org, both in the stable and dev versions.


Contributing to Braindecode
===========================

Guidelines for contributing to the library can be found on the braindecode github:

https://github.com/braindecode/braindecode/blob/master/CONTRIBUTING.md

Braindecode chat
================

https://gitter.im/braindecodechat/community

Citing
======

If you use this code in a scientific publication, please cite us as:

.. code-block:: bibtex

  @article {HBM:HBM23730,
  author = {Schirrmeister, Robin Tibor and Springenberg, Jost Tobias and Fiederer,
    Lukas Dominique Josef and Glasstetter, Martin and Eggensperger, Katharina and Tangermann, Michael and
    Hutter, Frank and Burgard, Wolfram and Ball, Tonio},
  title = {Deep learning with convolutional neural networks for EEG decoding and visualization},
  journal = {Human Brain Mapping},
  issn = {1097-0193},
  url = {http://dx.doi.org/10.1002/hbm.23730},
  doi = {10.1002/hbm.23730},
  month = {aug},
  year = {2017},
  keywords = {electroencephalography, EEG analysis, machine learning, end-to-end learning, brain–machine interface,
    brain–computer interface, model interpretability, brain mapping},
  }

as well as the `MNE-Python `_ software that is used by braindecode:

.. code-block:: bibtex

  @article{10.3389/fnins.2013.00267,
  author={Gramfort, Alexandre and Luessi, Martin and Larson, Eric and Engemann, Denis and Strohmeier, Daniel and Brodbeck, Christian and Goj, Roman and Jas, Mainak and Brooks, Teon and Parkkonen, Lauri and Hämäläinen, Matti},
  title={{MEG and EEG data analysis with MNE-Python}},
  journal={Frontiers in Neuroscience},
  volume={7},
  pages={267},
  year={2013},
  url={https://www.frontiersin.org/article/10.3389/fnins.2013.00267},
  doi={10.3389/fnins.2013.00267},
  issn={1662-453X},
  }




Licensing
^^^^^^^^^

This project is primarily licensed under the BSD-3-Clause License.

Additional Components
~~~~~~~~~~~~~~~~~~~~~

Some components within this repository are licensed under the Creative Commons Attribution-NonCommercial 4.0 International
License.

Please refer to the ``LICENSE`` and ``NOTICE`` files for more detailed
information.

Owner

  • Name: Braindecode
  • Login: braindecode
  • Kind: organization

Braindecode is an open-source Python toolbox for decoding raw electrophysiological brain data with deep learning models.

GitHub Events

Total
  • Create event: 8
  • Release event: 1
  • Issues event: 54
  • Watch event: 203
  • Delete event: 7
  • Issue comment event: 216
  • Push event: 95
  • Pull request review event: 118
  • Pull request review comment event: 129
  • Pull request event: 125
  • Fork event: 42
Last Year
  • Create event: 8
  • Release event: 1
  • Issues event: 54
  • Watch event: 203
  • Delete event: 7
  • Issue comment event: 216
  • Push event: 95
  • Pull request review event: 118
  • Pull request review comment event: 129
  • Pull request event: 125
  • Fork event: 42

Committers

Last synced: over 2 years ago

All Time
  • Total Commits: 1,541
  • Total Committers: 52
  • Avg Commits per committer: 29.635
  • Development Distribution Score (DDS): 0.68
Past Year
  • Commits: 332
  • Committers: 24
  • Avg Commits per committer: 13.833
  • Development Distribution Score (DDS): 0.383
Top Committers
Name Email Commits
Robin Tibor Schirrmeister r****r@g****m 493
bruAristimunha a****o@a****r 273
Alexandre Gramfort a****t@m****g 113
Cédric Rommel c****l@g****m 97
Lukas l****n@g****m 96
Hubert Banville h****e@g****m 90
Maciej Sliwowski m****i@g****m 59
gemeinl l****n@g****e 46
Lukas Alexander Wilhelm Gemein g****l@i****e 42
Simon Brandt s****t@p****m 25
Dan Laptop d****l@g****m 25
gemeinl g****l 21
Sylvain Chevallier s****r@u****r 13
Sylvain Chevallier s****r@u****r 12
PierreGtch 2****h 10
eeyhsong e****g@g****l 9
Kay Gregor Hartmann h****k@i****e 9
Joseph Paillard j****d@i****r 9
tomMoral t****0@g****m 8
brunalopes b****l@u****r 7
dcwil 3****l 7
Sara04 s****r@g****m 6
maciej m****8@w****l 6
Marco m****o@4****m 6
Tgnassou 6****u 6
19paillard j****d@m****r 5
Tgnassou t****u@g****m 4
Lukas Gemein l****n@g****m 4
Matthieu Terris m****s@g****m 3
Theo Gnassounou t****u@d****r 3
and 22 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 168
  • Total pull requests: 360
  • Average time to close issues: 8 months
  • Average time to close pull requests: 24 days
  • Total issue authors: 54
  • Total pull request authors: 37
  • Average comments per issue: 2.55
  • Average comments per pull request: 3.24
  • Merged pull requests: 268
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 32
  • Pull requests: 183
  • Average time to close issues: 8 days
  • Average time to close pull requests: 13 days
  • Issue authors: 9
  • Pull request authors: 13
  • Average comments per issue: 0.78
  • Average comments per pull request: 2.14
  • Merged pull requests: 126
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • bruAristimunha (39)
  • robintibor (26)
  • PierreGtch (16)
  • gemeinl (9)
  • martinwimpff (6)
  • itsaphel (5)
  • dungscout96 (4)
  • MohammadJavadD (3)
  • brunaafl (3)
  • Buddies-as-you-know (3)
  • CamiloMartinezM (3)
  • OverLordGoldDragon (3)
  • h1deOnBush (2)
  • bokey007 (2)
  • dcwil (2)
Pull Request Authors
  • bruAristimunha (200)
  • PierreGtch (47)
  • OverLordGoldDragon (9)
  • robintibor (8)
  • itsaphel (8)
  • MohammadJavadD (7)
  • gemeinl (7)
  • tgnassou (6)
  • cedricrommel (6)
  • tomMoral (5)
  • sylvchev (5)
  • lucas-heck (4)
  • gustavohenriquesr (4)
  • dcwil (4)
  • Sara04 (3)
Top Labels
Issue Labels
sprint (30) intermediate (13) enhancement (13) documentation (11) bug (10) question (9) basic (8) code-improvement (6) advanced (6) help wanted (1) good first issue (1)
Pull Request Labels
no changelog (13) filterbank models (10) model with channel information (2) sprint (1) wip (1) documentation (1)

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 11,503 last-month
  • Total dependent packages: 2
  • Total dependent repositories: 15
  • Total versions: 69
  • Total maintainers: 3
pypi.org: braindecode

Deep learning software to decode EEG, ECG or MEG signals

  • Versions: 69
  • Dependent Packages: 2
  • Dependent Repositories: 15
  • Downloads: 11,503 Last month
Rankings
Dependent packages count: 3.2%
Dependent repos count: 3.7%
Average: 3.9%
Downloads: 4.8%
Last synced: 6 months ago

Dependencies

docs/requirements.txt pypi
  • ipython *
  • memory_profiler *
  • numpydoc *
  • pillow *
  • sphinx_gallery *
  • sphinx_rtd_theme *
.github/workflows/link-to-doc.yaml actions
  • larsoner/circleci-artifacts-redirector-action master composite
.github/workflows/docs.yml actions
  • actions/cache v3 composite
  • actions/checkout v4 composite
  • actions/setup-python v4 composite
  • actions/upload-artifact v2 composite
  • peaceiris/actions-gh-pages v3 composite
.github/workflows/push-artifact-to-circleci.yml actions
.github/workflows/tests.yml actions
  • actions/cache v3 composite
  • actions/checkout v4 composite
  • actions/setup-python v4 composite
  • codecov/codecov-action v3 composite
.github/workflows/whats-new.yml actions
docs/_static/versions.json meteor
pyproject.toml pypi
  • docstring_inheritance *
  • einops *
  • h5py *
  • joblib *
  • matplotlib *
  • mne *
  • numpy *
  • pandas *
  • scipy *
  • skorch *
  • torch *
  • torchinfo *
.github/workflows/pre-commit.yaml actions
  • actions/checkout v3 composite
  • actions/setup-python v3 composite
  • pre-commit/action v3.0.0 composite