mcorr
Inferring bacterial recombination rates from large-scale sequencing datasets.
Science Score: 10.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
○codemeta.json file
-
○.zenodo.json file
-
○DOI references
-
✓Academic publication links
Links to: pubmed.ncbi, ncbi.nlm.nih.gov -
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (11.5%) to scientific vocabulary
Keywords
Repository
Inferring bacterial recombination rates from large-scale sequencing datasets.
Basic Info
- Host: GitHub
- Owner: kussell-lab
- Language: Go
- Default Branch: master
- Homepage: https://www.nature.com/articles/s41592-018-0293-7
- Size: 596 KB
Statistics
- Stars: 43
- Watchers: 3
- Forks: 8
- Open Issues: 7
- Releases: 0
Topics
Metadata Files
README.md
mcorr
Using Correlation Profiles of mutations to infer the recombination rate from large-scale sequencing data in bacteria.
Requirements
- Install
gitfrom https://git-scm.com; - Install
gofrom https://golang.org/doc/install; - Install
python3from https://www.python.org/ (we found running issues using the default Python in MacOS); - Install
pip3from https://pip.pypa.io/en/stable/installing/.
Installation
- Install
mcorr-xmfa,mcorr-bam, andmcorr-fitfrom your terminal:sh go get -u github.com/kussell-lab/mcorr/cmd/mcorr-xmfa go get -u github.com/kussell-lab/mcorr/cmd/mcorr-bam cd $HOME/go/src/github.com/kussell-lab/mcorr/cmd/mcorr-fit python3 setup.py installor to installmcorr-fitin local directory (~/.local/bin in Linux or ~/Library/Python/3.6/bin in MacOS):sh python3 setup.py install --user - Add
$HOME/go/binand$HOME/.local/binto your$PATHenvironment. In Linux, you can do it in your terminal:sh export PATH=$PATH:$HOME/go/bin:$HOME/.local/bin
In MacOS, you can do it as follows:
sh
export PATH=$PATH:$HOME/go/bin:$HOME/Library/Python/3.6/bin
We have tested installation in Windows 10, Ubuntu 17.10, and MacOS Big Sur (on both Intel and M1 chips), using Python 3 and Go 1.15 and 1.16.
Typical installation time on an iMac is 10 minutes.
Basic Usage
The inference of recombination parameters requires two steps:
Calculate Correlation Profile
- For whole-genome alignments (multiple gene alignments), use
mcorr-xmfa:
sh mcorr-xmfa <input XMFA file> <output prefix>The XMFA files should contain only coding sequences. The description of XMFA file can be found in http://darlinglab.org/mauve/user-guide/files.html. We provide two useful pipelines to generate whole-genome alignments: * from multiple assemblies: https://github.com/kussell-lab/AssemblyAlignmentGenerator; * from raw reads: https://github.com/kussell-lab/ReferenceAlignmentGenerator 2. For read alignments, usemcorr-bam:sh mcorr-bam <GFF3 file> <sorted BAM file> <output prefix>The GFF3 file is used for extracting the coding regions of the sorted BAM file. 3. For calculating correlation profiles between two clades or sequence clusters from whole-genome alignments, you can usemcorr-xmfa-2clades:sh mcorr-xmfa-2clades <input XMFA file 1> <input XMFA file 2> <output prefix>Where file 1 and file 2 are the multiple gene alignments for the two clades.All programs will produce two files: * a .csv file stores the calculated Correlation Profile, which will be used for fitting in the next step; * a .json file stores the (intermediate) Correlation Profile for each gene.
- For whole-genome alignments (multiple gene alignments), use
Fit the Correlation Profile using
mcorr-fit:For fitting correlation profiles as described in the 2019 Nature Methods paper use
mcorr-fit:sh mcorr-fit <.csv file> <output_prefix>It will produce four files:
* `<output_prefix>_best_fit.svg` shows the plots of the Correlation Profile, fitting, and residuals; * `<output_prefix>_fit_reports.txt` shows the summary of the fitted parameters; * `<output_prefix>_fit_results.csv` shows the table of fitted parameters; * `<output_prefix>_lmfit_report.csv` shows goodness of fit-statistics from LMFITTo fit correlation profiles using the method from the Nature Methods paper and do model selection with AIC by comparing to the zero recombination case, use
mcorrFitCompare:sh mcorrFitCompare <.csv file> <output_prefix>It will produce five files:
* `<output_prefix>_recombo_best_fit.svg` and `<output_prefix>_zero-recombo_best_fit.svg` show the plots of the Correlation Profile, fitting, and residuals for the model with recombination and for the zero recombination case; * `<output_prefix>_comparemodels.csv` shows the table of fitted parameters and AIC values; * `<output_prefix>_recombo_residuals.csv` and `<output_prefix>_zero-recombo_residuals.csv` includes residuals for the model with recombination and the zero-recombination case
Examples
Owner
- Name: Kussell Lab at New York University
- Login: kussell-lab
- Kind: organization
- Email: kussell.lab@gmail.com
- Location: 12 Waverly Place, New York, 10003
- Website: http://www.evophys.org/KussellLab/Research.html
- Repositories: 19
- Profile: https://github.com/kussell-lab
We combine theoretical biophysical approaches with experiments and bioinformatics to explore systems that exhibit complex, population-level phenomena.
GitHub Events
Total
- Watch event: 2
Last Year
- Watch event: 2
Committers
Last synced: over 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| Asher Preska Steinberg | a****s@g****m | 146 |
| Mingzhi Lin | m****9@g****m | 117 |
| Mingzhi Lin | m****i | 15 |
| apsteinberg | 6****g | 5 |
Issues and Pull Requests
Last synced: 8 months ago
All Time
- Total issues: 22
- Total pull requests: 2
- Average time to close issues: 4 months
- Average time to close pull requests: 4 months
- Total issue authors: 20
- Total pull request authors: 2
- Average comments per issue: 3.05
- Average comments per pull request: 0.0
- Merged pull requests: 1
- Bot issues: 0
- Bot pull requests: 1
Past Year
- Issues: 1
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 1
- Pull request authors: 0
- Average comments per issue: 0.0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- jaresoles (2)
- Dx-wmc (2)
- y-hwang (1)
- microbial-cookie (1)
- sid-krish (1)
- rebeccasophiasalcedo (1)
- 473021677 (1)
- nick-youngblut (1)
- jdaron (1)
- yuhanH (1)
- Tonny-zhou (1)
- szimmerman92 (1)
- jianshu93 (1)
- teddyaroca (1)
- bjtully (1)
Pull Request Authors
- dependabot[bot] (1)
- mingzhi (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 2
-
Total downloads:
- pypi 16 last-month
- Total docker downloads: 7
-
Total dependent packages: 1
(may contain duplicates) -
Total dependent repositories: 2
(may contain duplicates) - Total versions: 2
- Total maintainers: 1
proxy.golang.org: github.com/kussell-lab/mcorr
- Homepage: https://github.com/kussell-lab/mcorr
- Documentation: https://pkg.go.dev/github.com/kussell-lab/mcorr#section-documentation
-
Latest release: v0.0.0-20220107174400-4adea90557f1
published about 4 years ago
Rankings
pypi.org: mcorr
Inferring recombination rates from correlation profiles
- Homepage: https://github.com/kussell-lab/mcorr
- Documentation: https://mcorr.readthedocs.io/
- License: MIT
-
Latest release: 20180314
published almost 8 years ago
Rankings
Maintainers (1)
Dependencies
- github.com/alecthomas/template v0.0.0-20190718012654-fb15b899a751
- github.com/alecthomas/units v0.0.0-20211218093645-b94a6e3cc137
- github.com/biogo/hts v1.4.3
- github.com/kussell-lab/biogo v0.0.0-20180102204004-ca4e680bc9e3
- github.com/kussell-lab/ncbiftp v0.0.0-20180102204232-614f5f8e9538
- github.com/mattn/go-colorable v0.1.12
- golang.org/x/sys v0.0.0-20211216021012-1d35b9e2eb4e
- gonum.org/v1/gonum v0.9.3
- gopkg.in/VividCortex/ewma.v1 v1.1.1
- gopkg.in/alecthomas/kingpin.v2 v2.2.6
- gopkg.in/cheggaaa/pb.v2 v2.0.7
- gopkg.in/fatih/color.v1 v1.7.0
- gopkg.in/mattn/go-colorable.v0 v0.1.0
- gopkg.in/mattn/go-isatty.v0 v0.0.4
- gopkg.in/mattn/go-runewidth.v0 v0.0.4
- lmfit *
- matplotlib *
- numdifftools *
- numpy *
- tqdm *