pyemma

🚂 Python API for Emma's Markov Model Algorithms 🚂

https://github.com/markovmodel/pyemma

Science Score: 10.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • â—‹
    CITATION.cff file
  • â—‹
    codemeta.json file
  • â—‹
    .zenodo.json file
  • â—‹
    DOI references
  • â—‹
    Academic publication links
  • ✓
    Committers with academic emails
    21 of 53 committers (39.6%) from academic institutions
  • â—‹
    Institutional organization owner
  • â—‹
    JOSS paper metadata
  • â—‹
    Scientific vocabulary similarity
    Low similarity (16.1%) to scientific vocabulary

Keywords

analysis bayesian-methods hidden-markov-model hmm kinetic-modeling markov-model markov-state-model mbar molecular-dynamics molecular-modeling python tica time-series umbrella-sampling

Keywords from Contributors

closember hyperparameter-optimization biomolecular-simulation molecular-dynamics-simulation monte-carlo path-sampling
Last synced: 6 months ago · JSON representation

Repository

🚂 Python API for Emma's Markov Model Algorithms 🚂

Basic Info
  • Host: GitHub
  • Owner: markovmodel
  • License: lgpl-3.0
  • Language: Python
  • Default Branch: devel
  • Homepage: http://pyemma.org
  • Size: 10.3 MB
Statistics
  • Stars: 327
  • Watchers: 30
  • Forks: 124
  • Open Issues: 57
  • Releases: 26
Archived
Topics
analysis bayesian-methods hidden-markov-model hmm kinetic-modeling markov-model markov-state-model mbar molecular-dynamics molecular-modeling python tica time-series umbrella-sampling
Created over 11 years ago · Last pushed over 2 years ago
Metadata Files
Readme License

README.rst

=============================================
This project is no longer actively maintained
=============================================

An alternative package reflecting most of PyEMMA's functionality is `deeptime `__.

=====================================
EMMA (Emma's Markov Model Algorithms)
=====================================

.. image:: https://img.shields.io/azure-devops/build/clonker/e16cf5d1-7827-4597-8bb5-b0f7577c73d1/6
   :target: https://dev.azure.com/clonker/pyemma/_build
.. image:: https://img.shields.io/pypi/v/pyemma.svg
   :target: https://pypi.python.org/pypi/pyemma
.. image:: https://anaconda.org/conda-forge/pyemma/badges/downloads.svg
   :target: https://anaconda.org/conda-forge/pyemma
.. image:: https://anaconda.org/conda-forge/pyemma/badges/installer/conda.svg
   :target: https://conda.anaconda.org/conda-forge
.. image:: https://img.shields.io/codecov/c/github/markovmodel/PyEMMA/devel.svg
   :target: https://codecov.io/gh/markovmodel/PyEMMA/branch/devel


What is it?
-----------
PyEMMA (EMMA = Emma's Markov Model Algorithms) is an open source
Python/C package for analysis of extensive molecular dynamics simulations.
In particular, it includes algorithms for estimation, validation and analysis
of:

  * Clustering and Featurization
  * Markov state models (MSMs)
  * Hidden Markov models (HMMs)
  * Multi-ensemble Markov models (MEMMs)
  * Time-lagged independent component analysis (TICA)
  * Transition Path Theory (TPT)

PyEMMA can be used from Jupyter (former IPython, recommended), or by
writing Python scripts. The docs, can be found at
`http://pyemma.org `__.


Citation
--------
If you use PyEMMA in scientific work, please cite:

    M. K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Pérez-Hernández,
    M. Hoffmann, N. Plattner, C. Wehmeyer, J.-H. Prinz and F. Noé:
    PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models,
    J. Chem. Theory Comput. 11, 5525-5542 (2015)


Installation
------------
If you want to use Miniconda on Linux or OSX, you can run this script to download and install everything::

   curl -s https://raw.githubusercontent.com/markovmodel/PyEMMA/devel/install_miniconda%2Bpyemma.sh | bash

If you have Anaconda/Miniconda installed, use the following::

   conda install -c conda-forge pyemma

With pip::

   pip install pyemma

or install latest devel branch with pip::

   pip install git+https://github.com/markovmodel/PyEMMA.git@devel

For a complete guide to installation, please have a look at the version
`online `__ or offline in file
doc/source/INSTALL.rst

To build the documentation offline you should install the requirements with::

   pip install -r requirements-build-doc.txt

Then build with make::

   cd doc; make html


Support and development
-----------------------
For bug reports/suggestions/complaints please file an issue on
`GitHub `__.

Or start a discussion on our mailing list: pyemma-users@lists.fu-berlin.de


External Libraries
------------------
* mdtraj (LGPLv3): https://mdtraj.org
* thermotools (LGLPv3): http://github.com/markovmodel/thermotools

Owner

  • Name: Markov model
  • Login: markovmodel
  • Kind: organization

GitHub Events

Total
  • Watch event: 19
  • Fork event: 6
Last Year
  • Watch event: 19
  • Fork event: 6

Committers

Last synced: over 2 years ago

All Time
  • Total Commits: 5,960
  • Total Committers: 53
  • Avg Commits per committer: 112.453
  • Development Distribution Score (DDS): 0.376
Past Year
  • Commits: 6
  • Committers: 5
  • Avg Commits per committer: 1.2
  • Development Distribution Score (DDS): 0.667
Top Committers
Name Email Commits
marscher m****r@f****e 3,722
Christoph Wehmeyer c****r@f****e 442
Benjamin Trendelkamp-Schroer b****r@f****e 421
noe f****e@f****e 358
jouno f****b@p****e 192
Moritz Hoffmann c****r@g****m 186
Paul, Fabian (fapa) f****l@m****e 121
gph82 g****z@f****e 104
thempel t****l@z****e 75
Martin K. Scherer m****r 59
Jan-Hendrik Prinz j****z@g****e 46
fnueske f****e@f****e 39
Simon Olsson s****s@h****m 33
Benjamin Trendelkamp-Schroer t****p@m****e 21
ppxasjsm a****y@f****e 20
florianlitzinger f****r 15
Guillermo Perez Hernandez g****2@z****e 11
Fabian Paul f****b@F****l 9
unknown p****l@T****l 7
Guillermo Pérez-Hernández g****2 7
Josh Fass m****e 6
Josh Fass j****4@c****u 5
John Chodera (MSKCC) c****j@m****g 5
Nuria n****r@f****e 4
Ismael Rodriguez Espigares i****p@t****t 4
RobertArbon r****n@b****k 4
Alexandra La Fleur a****r@f****e 4
Stefan Doerr s****r@u****u 3
leonardo l****o@m****) 3
Sander Roet s****t@h****m 3
and 23 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 102
  • Total pull requests: 20
  • Average time to close issues: 3 months
  • Average time to close pull requests: 18 days
  • Total issue authors: 63
  • Total pull request authors: 8
  • Average comments per issue: 3.73
  • Average comments per pull request: 1.55
  • Merged pull requests: 20
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • Bazzinga18 (9)
  • clonker (7)
  • hima111997 (5)
  • cgseitz (5)
  • orthonalmatrix (4)
  • rubinanoor9 (4)
  • germanbarcenas (3)
  • satyajitkhatua09 (3)
  • qasimpars (3)
  • Chakrabort123 (2)
  • Harshitasahni (2)
  • hl2500 (2)
  • debanjansen48 (2)
  • pojeda (1)
  • marscher (1)
Pull Request Authors
  • clonker (13)
  • evilsetg (1)
  • wehs7661 (1)
  • sroet (1)
  • comecattin (1)
  • sents (1)
  • sefalkner (1)
  • songyongshun (1)
Top Labels
Issue Labels
wontfix (19) tech-support (3) enhancement (2) design-discussion (2) documentation (2) question (2) coordinates (1) low-prio (1) msm (1) invalid (1)
Pull Request Labels

Packages

  • Total packages: 2
  • Total downloads:
    • pypi 752 last-month
  • Total dependent packages: 9
    (may contain duplicates)
  • Total dependent repositories: 14
    (may contain duplicates)
  • Total versions: 63
  • Total maintainers: 2
pypi.org: pyemma

PyEMMA: Emma's Markov Model Algorithms

  • Versions: 45
  • Dependent Packages: 7
  • Dependent Repositories: 9
  • Downloads: 752 Last month
Rankings
Dependent packages count: 2.3%
Stargazers count: 3.7%
Forks count: 4.3%
Average: 4.7%
Dependent repos count: 4.9%
Downloads: 8.5%
Maintainers (2)
Last synced: 6 months ago
conda-forge.org: pyemma

PyEMMA (EMMA = Emma's Markov Model Algorithms) is an open source Python/C package for analysis of extensive molecular dynamics simulations. In particular, it includes algorithms for estimation, validation and analysis of: * Clustering and Featurization * Markov state models (MSMs) * Hidden Markov models (HMMs) * Multi-ensemble Markov models (MEMMs) * Time-lagged independent component analysis (TICA) * Transition Path Theory (TPT)

  • Versions: 18
  • Dependent Packages: 2
  • Dependent Repositories: 5
Rankings
Dependent repos count: 14.8%
Forks count: 17.0%
Average: 18.6%
Dependent packages count: 19.6%
Stargazers count: 23.0%
Last synced: 6 months ago

Dependencies

doc/requirements-build-doc.txt pypi
  • msmb_theme >=1.2
  • sphinx-issues *
setup.py pypi
  • decorator >=4.0.0
  • deeptime >=0.4.2
  • h5py >=2.7.1
  • matplotlib *
  • mdtraj >=1.9.2
  • numpy >=1.8.0
  • pathos *
  • psutil >=3.1.1
  • pyyaml *
  • scipy >=0.11
  • tqdm >=4.23