catnet

๐Ÿ›ฐ๏ธ Learning to Aggregate Multi-Scale Context for Instance Segmentation in Remote Sensing Images (TNNLS 2024)

https://github.com/yeliudev/catnet

Science Score: 36.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • โ—‹
    CITATION.cff file
  • โœ“
    codemeta.json file
    Found codemeta.json file
  • โ—‹
    .zenodo.json file
  • โœ“
    DOI references
    Found 4 DOI reference(s) in README
  • โœ“
    Academic publication links
    Links to: arxiv.org, researchgate.net, ieee.org
  • โ—‹
    Committers with academic emails
  • โ—‹
    Institutional organization owner
  • โ—‹
    JOSS paper metadata
  • โ—‹
    Scientific vocabulary similarity
    Low similarity (12.8%) to scientific vocabulary

Keywords

instance-segmentation object-detection
Last synced: 6 months ago · JSON representation

Repository

๐Ÿ›ฐ๏ธ Learning to Aggregate Multi-Scale Context for Instance Segmentation in Remote Sensing Images (TNNLS 2024)

Basic Info
Statistics
  • Stars: 82
  • Watchers: 1
  • Forks: 12
  • Open Issues: 0
  • Releases: 0
Topics
instance-segmentation object-detection
Created about 4 years ago · Last pushed over 1 year ago
Metadata Files
Readme License

README.md

Context Aggregation Network

arXiv License

This repository maintains the official implementation of the paper Learning to Aggregate Multi-Scale Context for Instance Segmentation in Remote Sensing Images by Ye Liu, Huifang Li, Chao Hu, Shuang Luo, Yan Luo, and Chang Wen Chen, which has been accepted by TNNLS.

Installation

Please refer to the following environmental settings that we use. You may install these packages by yourself if you meet any problem during automatic installation.

Install from source

  1. Clone the repository from GitHub.

git clone https://github.com/yeliudev/CATNet.git cd CATNet

  1. Install dependencies.

pip install -r requirements.txt

  1. Set environment variable

export PYTHONPATH=$PWD:$PYTHONPATH

Getting Started

Download and prepare the datasets

  1. Download the pre-processed datasets.
  1. Prepare the files in the following structure.

CATNet โ”œโ”€โ”€ configs โ”œโ”€โ”€ datasets โ”œโ”€โ”€ models โ”œโ”€โ”€ tools โ”œโ”€โ”€ data โ”‚ โ”œโ”€โ”€ dior โ”‚ โ”‚ โ”œโ”€โ”€ Annotations โ”‚ โ”‚ โ”œโ”€โ”€ ImageSets โ”‚ โ”‚ โ””โ”€โ”€ JPEGImages โ”‚ โ”œโ”€โ”€ hrsid โ”‚ โ”‚ โ”œโ”€โ”€ annotations โ”‚ โ”‚ โ””โ”€โ”€ images โ”‚ โ”œโ”€โ”€ isaid โ”‚ โ”‚ โ”œโ”€โ”€ train โ”‚ โ”‚ โ”œโ”€โ”€ val โ”‚ โ”‚ โ””โ”€โ”€ test โ”‚ โ””โ”€โ”€ vhr โ”‚ โ”œโ”€โ”€ annotations โ”‚ โ””โ”€โ”€ images โ”œโ”€โ”€ README.md โ”œโ”€โ”€ setup.cfg โ””โ”€โ”€ ยทยทยท

Train a model

Run the following command to train a model using a specified config.

mim train mmdet <path-to-config> --gpus 4 --launcher pytorch

If an out-of-memory error occurs on iSAID dataset, please uncomment L22-L24 in the dataset code and try again. This will filter out a few images with more than 1,000 objects, largely reducing the memory cost.

Test a model and evaluate results

Run the following command to test a model and evaluate results.

mim test mmdet <path-to-config> --checkpoint <path-to-checkpoint> --gpus 4 --launcher pytorch

Model Zoo

We provide multiple pre-trained models here. All the models are trained using 4 NVIDIA A100 GPUs and are evaluated using the default metrics of the datasets.

Dataset Model Backbone Schd Aug Performance Download
BBox AP Mask AP
iSAID CAT Mask R-CNN ResNet-50 3x 45.1 37.2 model | metrics
CAT Mask R-CNN ResNet-50 3x 47.7 39.2 model | metrics
DIOR CATNet ResNet-50 3x 74.0 โ€” model | metrics
CATNet ResNet-50 3x 78.2 โ€” model | metrics
CAT R-CNN ResNet-50 3x 75.8 โ€” model | metrics
CAT R-CNN ResNet-50 3x 80.6 โ€” model | metrics
NWPU
VHR-10
CAT Mask R-CNN ResNet-50 6x 71.0 69.3 model | metrics
CAT Mask R-CNN ResNet-50 6x 72.4 70.7 model | metrics
HRSID CAT Mask R-CNN ResNet-50 6x 70.9 57.6 model | metrics
CAT Mask R-CNN ResNet-50 6x 72.0 59.6 model | metrics

Citation

If you find this project useful for your research, please kindly cite our paper.

bibtex @article{liu2024learning, title={Learning to Aggregate Multi-Scale Context for Instance Segmentation in Remote Sensing Images}, author={Liu, Ye and Li, Huifang and Hu, Chao and Luo, Shuang and Luo, Yan and Chen, Chang Wen}, journal={IEEE Transactions on Neural Networks and Learning Systems}, year={2024} }

Owner

  • Name: Ye Liu
  • Login: yeliudev
  • Kind: user
  • Location: Hong Kong SAR, China
  • Company: The Hong Kong Polytechnic University

GitHub Events

Total
  • Issues event: 1
  • Watch event: 18
  • Issue comment event: 1
  • Fork event: 6
Last Year
  • Issues event: 1
  • Watch event: 18
  • Issue comment event: 1
  • Fork event: 6

Committers

Last synced: 7 months ago

All Time
  • Total Commits: 5
  • Total Committers: 1
  • Avg Commits per committer: 5.0
  • Development Distribution Score (DDS): 0.0
Past Year
  • Commits: 0
  • Committers: 0
  • Avg Commits per committer: 0.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Ye Liu y****v@o****m 5

Issues and Pull Requests

Last synced: 7 months ago

All Time
  • Total issues: 17
  • Total pull requests: 0
  • Average time to close issues: 13 days
  • Average time to close pull requests: N/A
  • Total issue authors: 13
  • Total pull request authors: 0
  • Average comments per issue: 1.71
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 5
  • Pull requests: 0
  • Average time to close issues: 13 days
  • Average time to close pull requests: N/A
  • Issue authors: 4
  • Pull request authors: 0
  • Average comments per issue: 2.6
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • wangqingl (2)
  • selinkoles (2)
  • gsj-zk (2)
  • wuyunxiangwyx (1)
  • 348300984 (1)
  • lqh964165950 (1)
  • vansin (1)
  • chhhhh123 (1)
  • rose-jinyang (1)
  • YangPanHZAU (1)
  • talhayaseen57 (1)
  • cashily (1)
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels

Dependencies

requirements.txt pypi
  • mmcv-full >=1.3.14,<1.4
  • mmdet >=2.18,<2.19
  • nncore >=0.3.2
  • torch >=1.10
  • torchvision >=0.11
.github/workflows/lint.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite