Science Score: 13.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
○DOI references
-
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (13.0%) to scientific vocabulary
Keywords
Repository
R interface to fast.ai
Basic Info
- Host: GitHub
- Owner: EagerAI
- License: apache-2.0
- Language: HTML
- Default Branch: master
- Homepage: https://eagerai.github.io/fastai/
- Size: 69 MB
Statistics
- Stars: 118
- Watchers: 5
- Forks: 13
- Open Issues: 5
- Releases: 0
Topics
Metadata Files
README.md
R interface to fastai
The fastai package provides R wrappers to fastai.
The fastai library simplifies training fast and accurate neural nets using
modern best practices. See the
fastai website to get started. The library
is based on research into deep learning best practices undertaken at fast.ai,
and includes "out of the box" support for vision, text, tabular, and collab
(collaborative filtering) models.

Continuous Build Status
| Build | Status |
| ----------------- | ------------------------------------------------------------------------------ |
| Bionic | |
| Focal |
|
| Mac OS |
|
| Windows |
|
Installation
1. Install miniconda and activate environment:
reticulate::install_miniconda()
reticulate::conda_create('r-reticulate')
2. The dev version:
devtools::install_github('eagerai/fastai')
3. Later, you need to install the python module fastai:
reticulate::use_condaenv('r-reticulate',required = TRUE)
fastai::install_fastai(gpu = FALSE, cuda_version = '11.6', overwrite = FALSE)
4. Restart RStudio!
fast.ai extensions:
Kaggle
We currently prepare the examples of usage of the fastai from R in Kaggle competitions:
- Introduction
- MNIST with Pytorch and fastai
- NLP Binary Classification
- Audio classification
- CycleGAN
- Fastai on Colab TPUs
Contributions are very welcome!
Tabular data
``` library(magrittr) library(fastai)
download
URLsADULTSAMPLE()
read data
df = data.table::fread('adult_sample/adult.csv') ```
Variables:
dep_var = 'salary'
cat_names = c('workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race')
cont_names = c('age', 'fnlwgt', 'education-num')
Preprocess strategy:
procs = list(FillMissing(),Categorify(),Normalize())
Prepare:
dls = TabularDataTable(df, procs, cat_names, cont_names,
y_names = dep_var, splits = list(c(1:32000),c(32001:32561))) %>%
dataloaders(bs = 64)
Summary:
model = dls %>% tabular_learner(layers=c(200,100), metrics=accuracy)
model %>% summary()
```
TabularModel (Input shape: ['64 x 7', '64 x 3'])
Layer (type) Output Shape Param # Trainable
Embedding 64 x 6 60 True
Embedding 64 x 8 136 True
Embedding 64 x 5 40 True
Embedding 64 x 8 136 True
Embedding 64 x 5 35 True
Embedding 64 x 4 24 True
Embedding 64 x 3 9 True
Dropout 64 x 39 0 False
BatchNorm1d 64 x 3 6 True
BatchNorm1d 64 x 42 84 True
Linear 64 x 200 8,400 True
ReLU 64 x 200 0 False
BatchNorm1d 64 x 200 400 True
Linear 64 x 100 20,000 True
ReLU 64 x 100 0 False
Linear 64 x 2 202 True
Total params: 29,532 Total trainable params: 29,532 Total non-trainable params: 0
Optimizer used:
Callbacks: - TrainEvalCallback - Recorder - ProgressCallback ```
Before fitting try to find optimal learning rate:
``` model %>% lr_find()
model %>% plotlrfind(dpi = 200) ```

Run:
model %>% fit(5, lr = 10^-1)
epoch train_loss valid_loss accuracy time
0 0.360149 0.329587 0.846702 00:04
1 0.352106 0.345761 0.828877 00:04
2 0.368743 0.340913 0.844920 00:05
3 0.347277 0.333084 0.852050 00:04
4 0.348969 0.350707 0.830660 00:04
Plot loss history:
model %>% plot_loss(dpi = 200)

See training process:
Get confusion matrix:
model %>% get_confusion_matrix()
``` <50k >=50k <50k 407 22
=50k 68 64 ```
Plot it:
``` interp = ClassificationInterpretationfromlearner(model)
interp %>% plotconfusionmatrix(dpi = 90,figsize = c(6,6)) ```

Get predictions on new data:
```
model %>% predict(df[10:15,])
<50k >=50k classes
1 0.5108562 0.4891439 0 2 0.4827824 0.5172176 1 3 0.4873166 0.5126833 1 4 0.5013804 0.4986197 0 5 0.4964157 0.5035844 1 6 0.5111378 0.4888622 0 ```
Image data
Get Pets dataset:
URLs_PETS()
Define path to folders:
path = 'oxford-iiit-pet'
path_anno = 'oxford-iiit-pet/annotations'
path_img = 'oxford-iiit-pet/images'
fnames = get_image_files(path_img)
See one of examples:
``` fnames[1]
oxford-iiit-pet/images/americanpitbullterrier129.jpg ```
Dataloader:
dls = ImageDataLoaders_from_name_re(
path, fnames, pat='(.+)_\\d+.jpg$',
item_tfms=Resize(size = 460), bs = 10,
batch_tfms=list(Normalize_from_stats( imagenet_stats() )
)
)
Show batch for visualization:
dls %>% show_batch()

Model architecture:
learn = cnn_learner(dls, resnet34(), metrics = error_rate)
And fit:
``` learn %>% fitonecycle(n_epoch = 2)
epoch trainloss validloss error_rate time 0 0.904872 0.317927 0.105548 00:35 1 0.694395 0.239520 0.083897 00:36 ```
Get confusion matrix and plot:
``` conf = learn %>% getconfusionmatrix()
library(highcharter) hchart(conf, label = TRUE) %>% hcyAxis(title = list(text = 'Actual')) %>% hcxAxis(title = list(text = 'Predicted'), labels = list(rotation = -90)) ```

Note that the plot is built with highcharter.
Plot top losses:
``` interp = ClassificationInterpretationfromlearner(learn)
interp %>% plottoplosses(k = 9, figsize = c(15,11)) ```

Alternatively, load images from folders:
```
get sample data
URLsMNISTSAMPLE()
transformations
path = 'mnist_sample' bs = 20
load into memory
data = ImageDataLoadersfromfolder(path, size = 26, bs = bs)
Visualize and train
data %>% show_batch(dpi = 150)
learn = cnn_learner(data, resnet18(), metrics = accuracy) learn %>% fit(2) ```

What about the implementation of the latest Computer Vision models?
There is a function in fastai timm_learner which originally written by
Zachary Mueller.
It helps to quickly load the pretrained models from
timm library.
First, lets's see the list of available models (TOP 10):
```
str(as.list(timmlistmodels()[1:10])) List of 10 $ : chr "advinceptionv3" $ : chr "cspdarknet53" $ : chr "cspdarknet53iabn" $ : chr "cspresnet50" $ : chr "cspresnet50d" $ : chr "cspresnet50w" $ : chr "cspresnext50" $ : chr "cspresnext50iabn" $ : chr "darknet53" $ : chr "densenet121" ```
Exciting!
Now, load and train pets dataset:
``` library(magrittr) library(fastai)
path = 'oxford-iiit-pet'
path_img = 'oxford-iiit-pet/images'
fnames = getimagefiles(path_img)
dls = ImageDataLoadersfromnamere( path, fnames, pat='(.+)\d+.jpg$', itemtfms=Resize(size = 460), bs = 10, batchtfms=list(Normalizefromstats( imagenet_stats() ) ) )
learn = timmlearner(dls, 'cspdarknet53', metrics = list(accuracy, errorrate))
learn %>% summary() ```
Model summary
```
Sequential (Input shape: ['10 x 3 x 224 x 224'])
================================================================
Layer (type) Output Shape Param # Trainable
================================================================
Conv2d 10 x 32 x 224 x 224 864 False
________________________________________________________________
LeakyReLU 10 x 32 x 224 x 224 0 False
________________________________________________________________
Conv2d 10 x 64 x 112 x 112 18,432 False
________________________________________________________________
LeakyReLU 10 x 64 x 112 x 112 0 False
________________________________________________________________
Conv2d 10 x 128 x 112 x 11 8,192 False
________________________________________________________________
LeakyReLU 10 x 128 x 112 x 11 0 False
________________________________________________________________
Conv2d 10 x 32 x 112 x 112 2,048 False
________________________________________________________________
LeakyReLU 10 x 32 x 112 x 112 0 False
________________________________________________________________
Conv2d 10 x 64 x 112 x 112 18,432 False
________________________________________________________________
LeakyReLU 10 x 64 x 112 x 112 0 False
________________________________________________________________
Conv2d 10 x 64 x 112 x 112 4,096 False
________________________________________________________________
LeakyReLU 10 x 64 x 112 x 112 0 False
________________________________________________________________
Conv2d 10 x 64 x 112 x 112 8,192 False
________________________________________________________________
LeakyReLU 10 x 64 x 112 x 112 0 False
________________________________________________________________
Conv2d 10 x 128 x 56 x 56 73,728 False
________________________________________________________________
LeakyReLU 10 x 128 x 56 x 56 0 False
________________________________________________________________
Conv2d 10 x 128 x 56 x 56 16,384 False
________________________________________________________________
LeakyReLU 10 x 128 x 56 x 56 0 False
________________________________________________________________
Conv2d 10 x 64 x 56 x 56 4,096 False
________________________________________________________________
LeakyReLU 10 x 64 x 56 x 56 0 False
________________________________________________________________
Conv2d 10 x 64 x 56 x 56 36,864 False
________________________________________________________________
LeakyReLU 10 x 64 x 56 x 56 0 False
________________________________________________________________
Conv2d 10 x 64 x 56 x 56 4,096 False
________________________________________________________________
LeakyReLU 10 x 64 x 56 x 56 0 False
________________________________________________________________
Conv2d 10 x 64 x 56 x 56 36,864 False
________________________________________________________________
LeakyReLU 10 x 64 x 56 x 56 0 False
________________________________________________________________
Conv2d 10 x 64 x 56 x 56 4,096 False
________________________________________________________________
LeakyReLU 10 x 64 x 56 x 56 0 False
________________________________________________________________
Conv2d 10 x 128 x 56 x 56 16,384 False
________________________________________________________________
LeakyReLU 10 x 128 x 56 x 56 0 False
________________________________________________________________
Conv2d 10 x 256 x 28 x 28 294,912 False
________________________________________________________________
LeakyReLU 10 x 256 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 256 x 28 x 28 65,536 False
________________________________________________________________
LeakyReLU 10 x 256 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 16,384 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 147,456 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 16,384 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 147,456 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 16,384 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 147,456 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 16,384 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 147,456 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 16,384 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 147,456 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 16,384 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 147,456 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 16,384 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 147,456 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 16,384 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 147,456 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 128 x 28 x 28 16,384 False
________________________________________________________________
LeakyReLU 10 x 128 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 256 x 28 x 28 65,536 False
________________________________________________________________
LeakyReLU 10 x 256 x 28 x 28 0 False
________________________________________________________________
Conv2d 10 x 512 x 14 x 14 1,179,648 False
________________________________________________________________
LeakyReLU 10 x 512 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 512 x 14 x 14 262,144 False
________________________________________________________________
LeakyReLU 10 x 512 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 65,536 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 589,824 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 65,536 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 589,824 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 65,536 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 589,824 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 65,536 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 589,824 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 65,536 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 589,824 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 65,536 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 589,824 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 65,536 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 589,824 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 65,536 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 589,824 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 256 x 14 x 14 65,536 False
________________________________________________________________
LeakyReLU 10 x 256 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 512 x 14 x 14 262,144 False
________________________________________________________________
LeakyReLU 10 x 512 x 14 x 14 0 False
________________________________________________________________
Conv2d 10 x 1024 x 7 x 7 4,718,592 False
________________________________________________________________
LeakyReLU 10 x 1024 x 7 x 7 0 False
________________________________________________________________
Conv2d 10 x 1024 x 7 x 7 1,048,576 False
________________________________________________________________
LeakyReLU 10 x 1024 x 7 x 7 0 False
________________________________________________________________
Conv2d 10 x 512 x 7 x 7 262,144 False
________________________________________________________________
LeakyReLU 10 x 512 x 7 x 7 0 False
________________________________________________________________
Conv2d 10 x 512 x 7 x 7 2,359,296 False
________________________________________________________________
LeakyReLU 10 x 512 x 7 x 7 0 False
________________________________________________________________
Conv2d 10 x 512 x 7 x 7 262,144 False
________________________________________________________________
LeakyReLU 10 x 512 x 7 x 7 0 False
________________________________________________________________
Conv2d 10 x 512 x 7 x 7 2,359,296 False
________________________________________________________________
LeakyReLU 10 x 512 x 7 x 7 0 False
________________________________________________________________
Conv2d 10 x 512 x 7 x 7 262,144 False
________________________________________________________________
LeakyReLU 10 x 512 x 7 x 7 0 False
________________________________________________________________
Conv2d 10 x 512 x 7 x 7 2,359,296 False
________________________________________________________________
LeakyReLU 10 x 512 x 7 x 7 0 False
________________________________________________________________
Conv2d 10 x 512 x 7 x 7 262,144 False
________________________________________________________________
LeakyReLU 10 x 512 x 7 x 7 0 False
________________________________________________________________
Conv2d 10 x 512 x 7 x 7 2,359,296 False
________________________________________________________________
LeakyReLU 10 x 512 x 7 x 7 0 False
________________________________________________________________
Conv2d 10 x 512 x 7 x 7 262,144 False
________________________________________________________________
LeakyReLU 10 x 512 x 7 x 7 0 False
________________________________________________________________
Conv2d 10 x 1024 x 7 x 7 1,048,576 False
________________________________________________________________
LeakyReLU 10 x 1024 x 7 x 7 0 False
________________________________________________________________
AdaptiveAvgPool2d 10 x 1024 x 1 x 1 0 False
________________________________________________________________
AdaptiveMaxPool2d 10 x 1024 x 1 x 1 0 False
________________________________________________________________
Flatten 10 x 2048 0 False
________________________________________________________________
BatchNorm1d 10 x 2048 4,096 True
________________________________________________________________
Dropout 10 x 2048 0 False
________________________________________________________________
Linear 10 x 512 1,048,576 True
________________________________________________________________
ReLU 10 x 512 0 False
________________________________________________________________
BatchNorm1d 10 x 512 1,024 True
________________________________________________________________
Dropout 10 x 512 0 False
________________________________________________________________
Linear 10 x 37 18,944 True
________________________________________________________________
Total params: 27,654,496
Total trainable params: 1,072,640
Total non-trainable params: 26,581,856
Optimizer used:
And finally, fit:
learn %>% fit_one_cycle(3)
``` epoch trainloss validloss accuracy error_rate time
0 1.206384 0.518956 0.847091 0.152909 01:00 1 0.841627 0.411970 0.890392 0.109608 00:58 2 0.657220 0.328548 0.899188 0.100812 00:59
```
See results:
learn %>% show_results()
Impressive!

GAN example
Get data (4,4 GB):
``` URLsLSUNBEDROOMS()
path = 'bedroom' ```
Dataloader function:
``` getdls <- function(bs, size) { dblock = DataBlock(blocks = list(TransformBlock(), ImageBlock()), getx = generatenoise(), getitems = getimagefiles(), splitter = IndexSplitter(c()), itemtfms = Resize(size, method = "crop"), batchtfms = Normalizefromstats(c(0.5,0.5,0.5), c(0.5,0.5,0.5)) ) dblock %>% dataloaders(source = path, path = path,bs = bs) }
dls = get_dls(128, 64) ```
Generator and discriminator:
``` generator = basicgenerator(outsize = 64, nchannels = 3, nextralayers = 1) critic = basiccritic(insize = 64, nchannels = 3, nextralayers = 1, actcls = partial(nn$LeakyReLU, negativeslope = 0.2))
```
Model:
learn = GANLearner_wgan(dls, generator, critic, opt_func = partial(Adam(), mom=0.))
And fit:
``` learn$recorder$trainmetrics = TRUE learn$recorder$validmetrics = FALSE
learn %>% fit(1, 2e-4, wd = 0) ```
epoch train_loss gen_loss crit_loss time
0 -0.555554 0.516327 -0.967604 05:06
This is the result for 1 epoch.
learn %>% show_results(max_n = 16, figsize = c(8,8), ds_idx=0)
Unet example
Call libraries:
library(fastai)
library(magrittr)
Get data
URLs_CAMVID()
Specify folders:
``` path = 'camvid' fnames = getimagefiles(paste(path,'images',sep = '/')) lblnames = getimagefiles(paste(path,'labels',sep = '/')) codes = data.table::fread(paste(path,'codes.txt',sep = '/'), header = FALSE)[['V1']] validfnames = data.table::fread(paste(path,'valid.txt',sep = '/'),header = FALSE)[['V1']]
batch size
bs = 8 ```
Define a loader object:
``` camvid = DataBlock(blocks = c(ImageBlock(), MaskBlock(codes)), getitems = getimagefiles, splitter = FileSplitter('camvid/valid.txt'), gety = function(x) {paste('camvid/labels/',x$stem,'P',x$suffix,sep = '')}, batchtfms = list(Normalizefromstats( imagenet_stats() ) ) )
prefix and suffix of the name of the file
x$stem; x$suffix ```
Dataloader object and list of labels:
``` dls = camvid %>% dataloaders(source = "camvid/images", bs = bs, path = path)
dls %>% show_batch()
void_code = which(codes == "Void")
dls$vocab = codes
name2id = as.list(1:(length(codes))) names(name2id) = codes ```
str(name2id)
List of 32
$ Animal : int 1
$ Archway : int 2
$ Bicyclist : int 3
$ Bridge : int 4
$ Building : int 5
$ Car : int 6
$ CartLuggagePram : int 7
$ Child : int 8
$ Column_Pole : int 9
$ Fence : int 10
$ LaneMkgsDriv : int 11
$ LaneMkgsNonDriv : int 12
$ Misc_Text : int 13
$ MotorcycleScooter: int 14
$ OtherMoving : int 15
$ ParkingBlock : int 16
$ Pedestrian : int 17
$ Road : int 18
$ RoadShoulder : int 19
$ Sidewalk : int 20
$ SignSymbol : int 21
$ Sky : int 22
$ SUVPickupTruck : int 23
$ TrafficCone : int 24
$ TrafficLight : int 25
$ Train : int 26
$ Tree : int 27
$ Truck_Bus : int 28
$ Tunnel : int 29
$ VegetationMisc : int 30
$ Void : int 31
$ Wall : int 32
Custom accuracy function:
``` acccamvid <- function(input, target) { target = target$squeeze(1L) # exclude/filter void label mask = target != voidcode return( (input$argmax(dim=1L)[mask]$eq(target[mask])) %>% float() %>% mean() ) }
attr(acccamvid, "pyfunctionname") <- 'acccamvid' ```
Debug acc_camvid manually
``` batch = dls %>% one_batch(convert = FALSE) ``` ``` [[1]] TensorImage([[[[-1.4419e+00, -1.3117e+00, -1.1976e+00, ..., 2.2489e+00, 2.2238e+00, 2.0948e+00], [-1.5401e+00, -1.5213e+00, -1.4010e+00, ..., 1.9834e+00, 2.2378e+00, 2.2173e+00], [-1.6401e+00, -1.5477e+00, -1.5588e+00, ..., 9.1953e-01, 1.9501e+00, 1.1138e+00], ..., [-1.6852e+00, -1.5440e+00, -1.5132e+00, ..., -1.0596e+00, -1.0711e+00, -1.0674e+00], [-1.5265e+00, -1.6030e+00, -1.5804e+00, ..., -1.0268e+00, -1.0946e+00, -1.1181e+00], [-1.5423e+00, -1.5516e+00, -1.6014e+00, ..., -1.1734e+00, -1.1293e+00, -1.0777e+00]], [[-1.3446e+00, -1.2023e+00, -1.0470e+00, ..., 2.4286e+00, 2.4090e+00, 2.2977e+00], [-1.4481e+00, -1.4276e+00, -1.2930e+00, ..., 2.1422e+00, 2.4158e+00, 2.3778e+00], [-1.5607e+00, -1.4584e+00, -1.4641e+00, ..., 1.0026e+00, 2.0258e+00, 1.1376e+00], ..., [-1.5809e+00, -1.4399e+00, -1.4133e+00, ..., -7.8931e-01, -7.9807e-01, -7.9637e-01], [-1.4161e+00, -1.4909e+00, -1.4646e+00, ..., -8.0615e-01, -8.5201e-01, -8.5311e-01], [-1.4472e+00, -1.4567e+00, -1.5077e+00, ..., -9.4607e-01, -8.9744e-01, -8.2074e-01]], [[-1.1164e+00, -1.0162e+00, -9.1189e-01, ..., 2.6257e+00, 2.5726e+00, 2.4016e+00], [-1.2195e+00, -1.1752e+00, -1.0595e+00, ..., 2.3488e+00, 2.6271e+00, 2.5764e+00], [-1.3316e+00, -1.2451e+00, -1.2400e+00, ..., 1.0476e+00, 2.1812e+00, 1.3635e+00], ..., [-1.2881e+00, -1.1393e+00, -1.1035e+00, ..., -3.8940e-01, -4.0598e-01, -3.9861e-01], [-1.1427e+00, -1.2167e+00, -1.1906e+00, ..., -3.6462e-01, -4.3055e-01, -4.5333e-01], [-1.1525e+00, -1.1651e+00, -1.2190e+00, ..., -4.8259e-01, -4.3712e-01, -4.1413e-01]]], [[[-2.0552e-01, 3.9563e-01, 4.0691e-01, ..., -9.7342e-01, -7.8957e-01, -7.6035e-01], [-3.8852e-01, 4.2912e-01, 4.4469e-01, ..., -1.0449e+00, -8.5347e-01, -7.5299e-01], [ 3.5939e-01, 3.6353e-01, 4.7028e-01, ..., -9.3101e-01, -8.7398e-01, -7.9327e-01], ..., [-1.0510e+00, -1.0661e+00, -9.6690e-01, ..., -1.3688e+00, -1.4543e+00, -1.4645e+00], [-1.0578e+00, -1.0939e+00, -9.3117e-01, ..., -1.3939e+00, -1.4033e+00, -1.4209e+00], [-9.9012e-01, -1.0312e+00, -1.0074e+00, ..., -1.4274e+00, -1.3829e+00, -1.3758e+00]], [[ 6.0090e-02, 7.8124e-01, 7.5145e-01, ..., -8.2881e-01, -6.7773e-01, -6.3718e-01], [-1.7114e-01, 7.8613e-01, 7.8531e-01, ..., -9.0003e-01, -7.3661e-01, -5.8707e-01], [ 7.3440e-01, 7.5691e-01, 8.2297e-01, ..., -8.0694e-01, -7.5451e-01, -6.2783e-01], ..., [-7.8971e-01, -7.8585e-01, -7.4870e-01, ..., -1.2630e+00, -1.3108e+00, -1.3046e+00], [-7.8414e-01, -7.9617e-01, -7.2847e-01, ..., -1.2297e+00, -1.2414e+00, -1.2594e+00], [-7.3135e-01, -7.7442e-01, -7.4849e-01, ..., -1.2259e+00, -1.1889e+00, -1.2022e+00]], [[ 4.4920e-01, 1.2392e+00, 1.3399e+00, ..., -6.0991e-01, -4.5250e-01, -4.4251e-01], [ 2.7577e-01, 1.2913e+00, 1.3755e+00, ..., -6.8060e-01, -5.1114e-01, -3.7442e-01], [ 1.0632e+00, 1.3052e+00, 1.3774e+00, ..., -5.8343e-01, -5.2787e-01, -3.9803e-01], ..., [-4.4165e-01, -4.4558e-01, -3.8942e-01, ..., -8.7048e-01, -9.2835e-01, -9.2750e-01], [-4.4233e-01, -4.6348e-01, -3.7176e-01, ..., -8.6960e-01, -8.8080e-01, -8.9788e-01], [-3.8967e-01, -4.3118e-01, -3.8587e-01, ..., -8.7933e-01, -8.4775e-01, -8.5052e-01]]], [[[ 1.2805e+00, 2.2139e+00, 9.9765e-01, ..., 6.6338e-01, -4.0192e-01, 2.8007e-01], [ 1.0171e+00, 1.8849e+00, 1.1654e+00, ..., -1.0001e+00, 1.1788e+00, 2.0717e+00], [ 2.8709e-01, 1.9494e+00, 2.1978e+00, ..., -6.7389e-01, 3.2762e-01, 4.5549e-01], ..., [-4.3609e-01, -4.2635e-01, -4.6298e-01, ..., 7.7548e-02, 3.6271e-02, -3.1759e-02], [-3.7265e-01, -4.3453e-01, -4.4666e-01, ..., -7.5601e-02, 5.3570e-03, -2.9393e-02], [-3.7581e-01, -4.0105e-01, -4.2908e-01, ..., 8.5172e-03, -3.3988e-03, -1.8303e-02]], [[ 1.3276e+00, 2.3720e+00, 1.0603e+00, ..., 8.6043e-01, -1.1662e-01, 5.2147e-01], [ 1.0938e+00, 2.0233e+00, 1.2629e+00, ..., -9.1610e-01, 1.3807e+00, 2.2914e+00], [ 3.8840e-01, 2.1078e+00, 2.3635e+00, ..., -5.8584e-01, 5.2653e-01, 7.8300e-01], ..., [-3.1636e-01, -3.0640e-01, -3.4385e-01, ..., 1.3784e-01, 9.5460e-02, 2.5607e-02], [-2.5150e-01, -3.1476e-01, -3.2716e-01, ..., -1.9409e-02, 6.3717e-02, 2.8037e-02], [-2.5473e-01, -2.8054e-01, -3.0920e-01, ..., 6.6963e-02, 5.4727e-02, 3.9424e-02]], [[ 1.8118e+00, 2.6126e+00, 1.5284e+00, ..., 1.3408e+00, 3.8263e-01, 9.4347e-01], [ 1.4345e+00, 2.2263e+00, 1.5055e+00, ..., -4.0407e-01, 1.9165e+00, 2.5325e+00], [ 6.9120e-01, 2.3214e+00, 2.5724e+00, ..., -5.9273e-02, 7.6707e-01, 9.8036e-01], ..., [-3.2707e-02, -2.5592e-02, -6.5520e-02, ..., 3.1733e-01, 2.8317e-01, 2.2166e-01], [ 1.6474e-02, -4.1773e-02, -5.1314e-02, ..., 1.6267e-01, 2.4836e-01, 2.1449e-01], [ 2.4832e-02, 1.0270e-02, -1.5259e-02, ..., 2.3768e-01, 2.2930e-01, 2.2220e-01]]], ..., [[[-1.5176e-02, -1.9729e-02, -5.4177e-02, ..., 2.0812e+00, 2.2489e+00, 2.2242e+00], [-1.0897e-02, 3.5695e-02, 2.3053e-03, ..., 2.1605e+00, 2.0372e+00, 2.1403e+00], [-2.8262e-02, -3.0313e-02, -3.4347e-02, ..., 2.2136e+00, 2.2489e+00, 1.2613e+00], ..., [-1.2644e+00, -1.2548e+00, -1.2313e+00, ..., -1.3335e+00, -1.3230e+00, -1.2787e+00], [-1.1986e+00, -1.2068e+00, -1.1631e+00, ..., -1.2694e+00, -1.2973e+00, -1.2696e+00], [-1.2508e+00, -1.2447e+00, -1.2294e+00, ..., -1.0572e+00, -1.0660e+00, -1.0694e+00]], [[ 2.2227e-01, 2.1430e-01, 2.1605e-01, ..., 2.3389e+00, 2.4286e+00, 2.4286e+00], [ 2.0176e-01, 2.4693e-01, 2.4092e-01, ..., 2.3745e+00, 2.2931e+00, 2.3820e+00], [ 1.8103e-01, 1.7892e-01, 1.7477e-01, ..., 2.4036e+00, 2.4286e+00, 1.4878e+00], ..., [-1.0710e+00, -1.0613e+00, -1.0374e+00, ..., -1.2492e+00, -1.2385e+00, -1.2225e+00], [-1.0040e+00, -1.0124e+00, -9.6780e-01, ..., -1.1836e+00, -1.2122e+00, -1.2193e+00], [-1.0572e+00, -1.0510e+00, -1.0354e+00, ..., -9.5631e-01, -9.6512e-01, -9.6444e-01]], [[ 5.4786e-01, 5.5583e-01, 5.3839e-01, ..., 2.5781e+00, 2.6400e+00, 2.6400e+00], [ 5.3558e-01, 5.8483e-01, 5.6649e-01, ..., 2.5895e+00, 2.5283e+00, 2.6400e+00], [ 5.2345e-01, 5.2294e-01, 5.1033e-01, ..., 2.6400e+00, 2.6400e+00, 1.7087e+00], ..., [-8.1354e-01, -8.0387e-01, -7.9721e-01, ..., -1.0014e+00, -9.9075e-01, -9.5806e-01], [-7.4687e-01, -7.5518e-01, -7.2870e-01, ..., -9.4173e-01, -9.6991e-01, -9.5030e-01], [-7.9981e-01, -7.9358e-01, -7.9630e-01, ..., -7.3474e-01, -7.4333e-01, -7.3628e-01]]], [[[ 6.8056e-01, 6.8056e-01, 6.9105e-01, ..., -3.6921e-01, -3.1641e-01, -3.3400e-01], [ 6.9991e-01, 7.1771e-01, 6.8056e-01, ..., -3.3319e-01, -3.4023e-01, -3.8674e-01], [ 6.9781e-01, 7.1034e-01, 6.9885e-01, ..., -2.9567e-01, -3.0638e-01, -2.8775e-01], ..., [-1.4393e+00, -1.4183e+00, -1.4183e+00, ..., -1.3420e+00, -1.4022e+00, -1.3872e+00], [-1.4436e+00, -1.4326e+00, -1.4335e+00, ..., -1.3950e+00, -1.3800e+00, -1.3734e+00], [-1.4509e+00, -1.4539e+00, -1.4533e+00, ..., -1.3681e+00, -1.4340e+00, -1.3650e+00]], [[ 2.0471e+00, 2.0471e+00, 2.0603e+00, ..., -6.5347e-02, 2.6326e-02, 3.4833e-02], [ 2.0525e+00, 2.0750e+00, 2.0818e+00, ..., -4.7675e-02, -5.2935e-03, -2.6855e-02], [ 2.0976e+00, 2.1136e+00, 2.1051e+00, ..., 1.8606e-02, 4.1052e-02, 8.5274e-02], ..., [-1.2304e+00, -1.2244e+00, -1.2219e+00, ..., -1.2425e+00, -1.3041e+00, -1.2836e+00], [-1.2239e+00, -1.2107e+00, -1.2107e+00, ..., -1.2967e+00, -1.2813e+00, -1.2746e+00], [-1.2210e+00, -1.2154e+00, -1.2157e+00, ..., -1.2695e+00, -1.3401e+00, -1.2696e+00]], [[ 2.6400e+00, 2.6400e+00, 2.6400e+00, ..., 3.4950e-01, 4.4111e-01, 4.1667e-01], [ 2.6400e+00, 2.6400e+00, 2.6400e+00, ..., 3.3850e-01, 3.8055e-01, 3.7792e-01], [ 2.6400e+00, 2.6400e+00, 2.6400e+00, ..., 4.4053e-01, 4.5217e-01, 4.8598e-01], ..., [-8.2900e-01, -8.1651e-01, -8.1498e-01, ..., -9.5577e-01, -1.0173e+00, -9.9684e-01], [-8.3432e-01, -8.2192e-01, -8.2227e-01, ..., -1.0234e+00, -1.0080e+00, -1.0014e+00], [-8.3237e-01, -8.2912e-01, -8.2936e-01, ..., -1.0039e+00, -1.0649e+00, -9.9452e-01]]], [[[ 2.0699e+00, 1.9477e+00, 2.0700e+00, ..., -1.5310e+00, -1.6490e+00, -1.6860e+00], [ 1.8292e+00, 2.1599e+00, 1.8882e+00, ..., -1.6536e+00, -1.6374e+00, -1.6022e+00], [ 2.0288e+00, 1.7863e+00, 2.0564e+00, ..., -1.6149e+00, -1.6315e+00, -1.5586e+00], ..., [-1.4481e+00, -1.3921e+00, -1.4195e+00, ..., -1.5045e+00, -1.5133e+00, -1.5381e+00], [-1.4223e+00, -1.3757e+00, -1.3943e+00, ..., -1.5238e+00, -1.5371e+00, -1.5453e+00], [-1.4134e+00, -1.4104e+00, -1.4300e+00, ..., -1.5163e+00, -1.5862e+00, -1.5565e+00]], [[ 1.5571e+00, 1.4284e+00, 1.8346e+00, ..., -1.4521e+00, -1.6496e+00, -1.6908e+00], [ 1.2790e+00, 1.6710e+00, 1.3942e+00, ..., -1.5838e+00, -1.6467e+00, -1.6069e+00], [ 1.4661e+00, 1.2568e+00, 1.7123e+00, ..., -1.5898e+00, -1.6761e+00, -1.6212e+00], ..., [-1.2567e+00, -1.2393e+00, -1.2457e+00, ..., -1.4077e+00, -1.4073e+00, -1.4286e+00], [-1.2191e+00, -1.2129e+00, -1.2214e+00, ..., -1.4193e+00, -1.4265e+00, -1.4403e+00], [-1.2213e+00, -1.2350e+00, -1.2495e+00, ..., -1.4075e+00, -1.4811e+00, -1.4504e+00]], [[ 1.1398e+00, 1.0327e+00, 1.4135e+00, ..., -1.2147e+00, -1.4180e+00, -1.4598e+00], [ 8.6931e-01, 1.2768e+00, 1.0129e+00, ..., -1.3449e+00, -1.3906e+00, -1.3518e+00], [ 1.1199e+00, 9.0534e-01, 1.2758e+00, ..., -1.3922e+00, -1.4662e+00, -1.4051e+00], ..., [-8.5999e-01, -8.2594e-01, -8.6729e-01, ..., -1.0699e+00, -1.0976e+00, -1.1388e+00], [-8.4630e-01, -8.2145e-01, -8.4266e-01, ..., -1.1058e+00, -1.1325e+00, -1.1478e+00], [-8.5198e-01, -8.5977e-01, -8.7435e-01, ..., -1.1186e+00, -1.1739e+00, -1.1579e+00]]]], device='cuda:0') [[2]] TensorMask([[[ 4, 4, 4, ..., 4, 4, 4], [ 4, 4, 4, ..., 4, 4, 4], [ 4, 4, 4, ..., 4, 4, 4], ..., [19, 19, 19, ..., 17, 17, 17], [19, 19, 19, ..., 17, 17, 17], [19, 19, 19, ..., 17, 17, 17]], [[ 4, 4, 4, ..., 4, 4, 4], [ 4, 4, 4, ..., 4, 4, 4], [ 4, 4, 4, ..., 4, 4, 4], ..., [17, 17, 17, ..., 17, 17, 17], [17, 17, 17, ..., 17, 17, 17], [17, 17, 17, ..., 17, 17, 17]], [[26, 21, 26, ..., 26, 26, 26], [26, 21, 26, ..., 26, 26, 26], [26, 21, 21, ..., 26, 26, 26], ..., [17, 17, 17, ..., 17, 17, 17], [17, 17, 17, ..., 17, 17, 17], [17, 17, 17, ..., 17, 17, 17]], ..., [[ 4, 4, 4, ..., 26, 26, 26], [ 4, 4, 4, ..., 26, 26, 26], [ 4, 4, 4, ..., 26, 26, 26], ..., [17, 17, 17, ..., 19, 19, 19], [17, 17, 17, ..., 19, 19, 19], [17, 17, 17, ..., 19, 19, 19]], [[21, 21, 21, ..., 4, 4, 4], [21, 21, 21, ..., 4, 4, 4], [21, 21, 21, ..., 4, 4, 4], ..., [17, 17, 17, ..., 19, 19, 19], [17, 17, 17, ..., 19, 19, 19], [17, 17, 17, ..., 19, 19, 19]], [[ 4, 4, 4, ..., 30, 30, 30], [ 4, 4, 4, ..., 30, 30, 30], [ 4, 4, 4, ..., 30, 30, 30], ..., [17, 17, 17, ..., 17, 17, 17], [17, 17, 17, ..., 17, 17, 17], [17, 17, 17, ..., 17, 17, 17]]], device='cuda:0') ``` The shape of the tensors: ``` batch[[1]]$shape;batch[[2]]$shape ``` ``` torch.Size([8, 3, 200, 266]) torch.Size([8, 200, 266]) ``` Define input and target: ``` input = batch[[1]] target = batch[[2]] ``` Filter Void class: ``` mask = target != void_code ``` `31` will be filtered as `False`: ``` TensorMask([[[True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], ..., [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True]], [[True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], ..., [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True]], [[True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], ..., [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True]], ..., [[True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], ..., [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True]], [[True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], ..., [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True]], [[True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], ..., [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True], [True, True, True, ..., True, True, True]]], device='cuda:0') ``` ``` > (input$argmax(dim=1L)[mask] == target[mask]) tensor([False, False, False, ..., False, False, False], device='cuda:0') ``` ``` > (input$argmax(dim=1L)[mask] == target[mask]) %>% float() tensor([0., 0., 0., ..., 0., 0., 0.], device='cuda:0') ``` ``` > (input$argmax(dim=1L)[mask]==target[mask]) %>% float() %>% mean() tensor(0.0011, device='cuda:0') ```
Resnet34 model architecture for unet:
learn = unet_learner(dls, resnet34(), metrics = acc_camvid)
And finally, fit:
``` lr = 3e-3 wd = 1e-2
learn %>% fitonecycle(2, slice(lr), pct_start = 0.9, wd = wd) ```
epoch train_loss valid_loss acc_camvid time
0 1.367869 1.239496 0.666145 00:25
1 0.929434 0.661407 0.839969 00:23
learn %>% show_results(max_n = 1, figsize = c(20,10), vmin = 1, vmax = 30)

Collab (Collaborative filtering)
Call libraries:
library(zeallot)
library(magrittr)
Get data:
URLs_MOVIE_LENS_ML_100k()
Specify column names:
c(user,item,title) %<-% list('userId','movieId','title')
Read datasets:
ratings = fread('ml-100k/u.data', col.names = c(user,item,'rating','timestamp'))
movies = fread('ml-100k/u.item', col.names = c(item, 'title', 'date', 'N', 'url',
paste('g',1:19,sep = '')))
Left join on item:
rating_movie = ratings[movies[, .SD, .SDcols=c(item,title)], on = item]
Load data from dataframe (R):
dls = CollabDataLoaders_from_df(rating_movie, seed=42, valid_pct=0.1, bs=64, item_name=title, path='ml-100k')
Build model:
learn = collab_learner(dls, n_factors = 40, y_range=c(0, 5.5))
Start learning:
learn %>% fit_one_cycle(1, 5e-3, wd = 1e-1)
Get top 1,000 movies:
top_movies = head(unique(rating_movie[ , count := .N, by = .(title)]
[order(count,decreasing = T)]
[, c('title','count')]),
1e3)[['title']]
Find mean ratings for the films:
mean_ratings = unique(rating_movie[ , .(mean = mean(rating)), by = title])
``` title mean 1: Toy Story (1995) 3.878319 2: GoldenEye (1995) 3.206107 3: Four Rooms (1995) 3.033333 4: Get Shorty (1995) 3.550239 5: Copycat (1995) 3.302326
1660: Sweet Nothing (1995) 3.000000 1661: Mat' i syn (1997) 1.000000 1662: B. Monkey (1998) 3.000000 1663: You So Crazy (1994) 3.000000 1664: Scream of Stone (Schrei aus Stein) (1991) 3.000000 ```
Extract bias:
``` moviebias = learn %>% getbias(topmovies, isitem = TRUE)
result = data.table(bias = moviebias, title = topmovies)
res = merge(result, mean_ratings, all.y = FALSE)
res[order(bias, decreasing = TRUE)] ```
``` title bias mean 1: Star Wars (1977) 0.29479960 4.358491 2: Fargo (1996) 0.25264889 4.155512 3: Godfather, The (1972) 0.23247446 4.283293 4: Silence of the Lambs, The (1991) 0.22765337 4.289744 5: Titanic (1997) 0.22353025 4.245714
996: Children of the Corn: The Gathering (1996) -0.05671900 1.315789 997: Jungle2Jungle (1997) -0.05957306 2.439394 998: Leave It to Beaver (1997) -0.06268980 1.840909 999: Speed 2: Cruise Control (1997) -0.06567496 2.131579 1000: Island of Dr. Moreau, The (1996) -0.07530680 2.157895 ```
Get weights:
movie_w = learn %>% get_weights(top_movies, is_item = TRUE, convert = TRUE)
Visualize with highcharter:
``` rownames(movie_w) = res$title
highcharter::hchart(princomp(moview, cor = TRUE)) %>% highcharter::hclegend(enabled = FALSE) ```

Text data
Grab data:
URLs_IMDB()
Specify path and small batch_size because it consumes a lot of GPU:
path = 'imdb'
bs = 20
Create datablock and iterator:
``` imdblm = DataBlock(blocks=list(TextBlockfromfolder(path, islm = TRUE)), getitems = partial(gettext_files(), folders = c('train', 'test', 'unsup')), splitter = RandomSplitter(0.1))
dbunchlm = imdblm %>% dataloaders(source = path, path = path, bs = bs, seq_len = 80) ```
Load a pretrained model and fit:
``` learn = languagemodellearner(dbunchlm, AWDLSTM(), drop_mult = 0.3, metrics = list(accuracy, Perplexity()))
learn %>% fitonecycle(1, 2e-2, moms = c(0.8, 0.7, 0.8)) ```
Note: AWD_LSTM() can throw an error. In this case find and clean ".fastai" folder.
Medical data
img = dcmread('hemorrhage.dcm')
Visualize data with different windowing effects:
``` dicomwindows = dicomwindows() scale = list(FALSE, TRUE, dicomwindows$brain, dicomwindows$subdural) titles = c('raw','normalized','brain windowed','subdural windowed')
library(zeallot) c(fig, axs[[2]]) %<-% subplots()
for (i in 1:4) { img %>% show(scale = scale[[i]], ax = axs[[i]], title=titles[i]) }
img %>% plot(dpi = 250) ```
Apply different cmaps:
img %>% show(cmap = cm()$gist_ncar, figsize = c(6,6))
img %>% plot()
Or get dcm matrix and plot with ggplot:
``` types = c('raw', 'normalized', 'brain', 'subdural') p_ = list() for ( i in 1:length(types)) { p = nandb::matrixrasterplot(img %>% getdcmmatrix(type = types[i])) p_[[i]] = p }
ggpubr::ggarrange(p[[1]], p[[2]], p[[3]], p[[4]], labels = types) ```
Let's try a relatively complex example:
``` library(ggplot2)
crop parameters
img = dcmread('hemorrhage.dcm') res = img %>% maskfromblur(win_brain()) %>% mask2bbox()
types = c('raw', 'normalized', 'brain', 'subdural')
colors for matrix filling
colors = list(viridis::inferno(30), viridis::magma(30), viridis::plasma(30), viridis::cividis(30)) scan_ = c('uniformblur2d', 'gaussblur2d') p_ = list()
for ( i in 1:length(types)) { if(i == 3) { scan = scan[1] } else if (i==4) { scan = scan[2] } else { scan = '' }
# crop with x/ylim functions from ggplot if(i==2) { p = nandb::matrixrasterplot(img %>% getdcm_matrix(type = types[i], scan = scan), colours = colors[[i]]) p = p + ylim(c(res[[1]][[1]],res[[2]][[1]])) + xlim(c(res[[1]][[2]],res[[2]][[2]]))
# zoom image (25 %) } else if (i==4) {
img2 = img
img2 %>% zoom(0.25)
p = nandb::matrix_raster_plot(img2 %>% get_dcm_matrix(type = types[i],
scan = scan),
colours = colors[[i]])
} else { p = nandb::matrixrasterplot(img %>% getdcmmatrix(type = types[i], scan = scan), colours = colors[[i]]) }
p_[[i]] = p }
ggpubr::ggarrange(p[[1]], p[[2]], p[[3]], p[[4]], labels = paste(types[1:4], paste(c('','',scan_))[1:4]) ) ```
Additional features
Find optimal learning rate
Get optimal learning rate and then fit:
``` data = model %>% lr_find() data
SuggestedLRs(lrmin=0.017378008365631102, lrsteep=0.0020892962347716093)
```
lr_rates losses
1 0.0000001000000 5.349157
2 0.0000001202264 5.231493
3 0.0000001445440 5.087494
4 0.0000001737801 5.068282
5 0.0000002089296 5.043181
6 0.0000002511886 5.023340
Visualize:
highcharter::hchart(data, "line", highcharter::hcaes(y = losses, x = lr_rates ))
Visualize batch
Visualize tensor(s):
```
get batch
batch = dls %>% one_batch(convert = TRUE)
visualize img 9 with transformations
magick::image_read(batch[[1]][[9]]) ```
Mask
Visualize mask:
``` library(magrittr) library(fastai)
original image
fns = getimagefiles('camvid/images') cam_fn = capture.output(fns[0])
mask
maskfn = 'camvid/labels/0016E501110P.png' camimg = Imagecreate(camfn)
create mask
tmask = Transform(Maskcreate()) mask = tmask(maskfn)
visualize
mask %>% tomatrix() %>% nandb::matrixraster_plot(colours = viridis::plasma(3)) + theme(legend.position = "none") ```
TensorPoints
Load Tiny Mnist:
```
download
URLsMNISTTINY()
black and white img
timg = Transform(ImageBWcreate) mnistfn = "mnisttiny/valid/3/9007.png" mnistimg = timg(mnist_fn)
resize img
pntimg = TensorImage(mnistimg %>% Image_resize(size = list(28,35)))
visualize
library(ggplot2) pntimg %>% tomatrix() %>% nandb::matrixrasterplot(colours = c('white','black')) + geompoint(aes(x=0, y=0),size=2, colour="red")+ geompoint(aes(x=0, y=35),size=2, colour="red")+ geompoint(aes(x=28, y=0),size=2, colour="red")+ geompoint(aes(x=28, y=35),size=2, colour="red")+ geom_point(aes(x=9, y=17),size=2, colour="red")+ theme(legend.position = "none") ```
Annotations on Tiny COCO
``` library(magrittr) library(zeallot) library(fastai)
URLsCOCOTINY()
c(images, lblbbox) %<-% getannotations('cocotiny/train.json') timg = Transform(ImageBWcreate) idx = 49 c(cocofn,bbox) %<-% list(paste('cocotiny/train',images[[idx]],sep = '/'), lblbbox[[idx]]) cocoimg = timg(coco_fn)
tbbox = LabeledBBox(TensorBBox(bbox[[1]]), bbox[[2]])
```
(#2) [TensorBBox([[ 91.3000, 77.9400, 102.4300, 82.4700],
[ 27.5800, 77.6500, 40.7600, 82.3400]]),['tv', 'tv']]
Visualize:
``` library(imager) coco = imager::load.image(coco_fn) plot(coco,axes=F)
for ( i in 1:length(bbox[[1]])) { rect(bbox[[1]][[i]][[1]],bbox[[1]][[i]][[2]], bbox[[1]][[i]][[3]],bbox[[1]][[i]][[4]], border = "white", lwd = 2)
text(bbox[[1]][[i]][[3]]-2.5,bbox[[1]][[i]][[4]]+2.5, labels = bbox[[2]][i], offset = 2, pos = 2, cex = 1, col = "white" ) }
```
Alternatively, we could see batch via dataloader:
``` idx = 3 c(cocofn,bbox) %<-% list(paste('cocotiny/train',images[[idx]],sep = '/'), lbl_bbox[[idx]])
cocobb = function(x) { TensorBBoxcreate(bbox[[1]]) }
coco_lbl = function(x) { bbox[[2]] }
cocodsrc = Datasets(c(rep(cocofn,10)), list(Imagecreate(), list(cocobb), list( cocolbl, MultiCategorize(addna = TRUE) ) ), n_inp = 1)
cocotdl = TfmdDL(cocodsrc, bs = 9, afteritem = list(BBoxLabeler(), PointScaler(), ToTensor()), afterbatch = list(IntToFloatTensor()) )
cocotdl %>% showbatch(dpi = 200) ```
NN module
To build a custom sequential model and pass it to learner:
nn$Sequential() +
nn$Conv2d(1L,20L,5L) +
nn$Conv2d(1L,20L,5L) +
nn$Conv2d(1L,20L,5L)
Sequential(
(0): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
(1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
(2): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
)
To specify the name of the layers, one has to pass layer within lists, because
torch layers have no name argument:
nn$Sequential() +
nn$Conv2d(1L,20L,5L) +
list('my_conv2',nn$Conv2d(1L,20L,5L)) +
nn$Conv2d(1L,20L,5L) +
list('my_conv4',nn$Conv2d(1L,20L,5L))
Sequential(
(0): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
(my_conv2): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
(1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
(my_conv4): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
)
Code of Conduct
Please note that the fastai project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.
Owner
- Name: EagerAI
- Login: EagerAI
- Kind: organization
- Repositories: 4
- Profile: https://github.com/EagerAI
GitHub Events
Total
- Issues event: 1
- Issue comment event: 1
- Pull request event: 1
- Create event: 1
Last Year
- Issues event: 1
- Issue comment event: 1
- Pull request event: 1
- Create event: 1
Committers
Last synced: 9 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| henry090 | t****4@g****m | 897 |
| imgbot[bot] | 3****] | 7 |
| Turgut Abdullayev | t****v@T****l | 7 |
| Cdk29 | e****k@g****m | 2 |
| restyled-io[bot] | 3****] | 1 |
| Yasin Uğur | 4****r | 1 |
| Turqut N. Abdullayev | A****i@k****z | 1 |
| Turgut Abdullayev | t****d@K****l | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 54
- Total pull requests: 52
- Average time to close issues: 14 days
- Average time to close pull requests: about 1 month
- Total issue authors: 15
- Total pull request authors: 3
- Average comments per issue: 2.7
- Average comments per pull request: 0.42
- Merged pull requests: 34
- Bot issues: 0
- Bot pull requests: 1
Past Year
- Issues: 1
- Pull requests: 2
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 1
- Pull request authors: 1
- Average comments per issue: 0.0
- Average comments per pull request: 0.0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- turgut090 (29)
- Cdk29 (10)
- mubashirqasim (2)
- oliviergimenez (2)
- fsame (1)
- EngrStudent (1)
- FrsLry (1)
- jesuiskelly (1)
- pnan997 (1)
- bjoernholzhauer (1)
- stevebit (1)
- srvanderplas (1)
- houndcl (1)
- MelihOrel (1)
- AnnaNzrv (1)
Pull Request Authors
- turgut090 (47)
- Cdk29 (4)
- imgbot[bot] (1)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- generics * imports
- ggplot2 * imports
- ggpubr * imports
- glue * imports
- png * imports
- reticulate * imports
- R.utils * suggests
- curl * suggests
- data.table * suggests
- knitr * suggests
- magrittr * suggests
- rmarkdown * suggests
- stats * suggests
- testthat * suggests
- utils * suggests
- vctrs * suggests
- viridis * suggests
- zeallot * suggests
- actions/checkout v1 composite
- r-lib/actions/setup-pandoc v1 composite
- r-lib/actions/setup-r v1 composite
- actions/checkout v1 composite
- r-lib/actions/setup-pandoc v1 composite
- r-lib/actions/setup-r v1 composite
- actions/checkout v1 composite
- r-lib/actions/setup-pandoc v1 composite
- r-lib/actions/setup-r v1 composite
- actions/checkout v1 composite
- r-lib/actions/setup-pandoc v1 composite
- r-lib/actions/setup-r v1 composite
- actions/checkout v1 composite
- r-lib/actions/setup-pandoc v1 composite
- r-lib/actions/setup-r v1 composite
- ${BASE_IMAGE} xenial build