coremltools

Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

https://github.com/apple/coremltools

Science Score: 36.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
    5 of 188 committers (2.7%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (13.5%) to scientific vocabulary

Keywords

coreml coremltools machine-learning model-conversion model-converter pytorch tensorflow

Keywords from Contributors

distributed tensor transformer autograd deep-neural-networks cryptography cryptocurrencies jax speech-recognition parallel
Last synced: 6 months ago · JSON representation

Repository

Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Basic Info
Statistics
  • Stars: 4,928
  • Watchers: 125
  • Forks: 713
  • Open Issues: 425
  • Releases: 44
Topics
coreml coremltools machine-learning model-conversion model-converter pytorch tensorflow
Created over 8 years ago · Last pushed 6 months ago
Metadata Files
Readme Contributing License Notice

README.md

Build Status PyPI Release Python Versions

Core ML Tools

Core ML Tools logo

Use Core ML Tools (coremltools) to convert machine learning models from third-party libraries to the Core ML format. This Python package contains the supporting tools for converting models from training libraries such as the following:

With coremltools, you can:

  • Convert trained models to the Core ML format.
  • Read, write, and optimize Core ML models.
  • Verify conversion/creation (on macOS) by making predictions using Core ML.

After conversion, you can integrate the Core ML models with your app using Xcode.

Install Version 8.3

To install the latest non-beta version, run the following command in your terminal: shell pip install -U coremltools

Install 9.0 Beta 1

The Coremltools version 9 beta 1 is now out. To install, run the following command in your terminal: shell pip install coremltools==9.0b1

Core ML

Core ML is an Apple framework to integrate machine learning models into your app. Core ML provides a unified representation for all models. Your app uses Core ML APIs and user data to make predictions, and to fine-tune models, all on the user’s device. Core ML optimizes on-device performance by leveraging the CPU, GPU, and Neural Engine while minimizing its memory footprint and power consumption. Running a model strictly on the user’s device removes any need for a network connection, which helps keep the user’s data private and your app responsive.

Resources

To install coremltools, see Installing Core ML Tools. For more information, see the following:

Owner

  • Name: Apple
  • Login: apple
  • Kind: organization
  • Location: Cupertino, CA

GitHub Events

Total
  • Create event: 11
  • Release event: 4
  • Issues event: 164
  • Watch event: 481
  • Delete event: 4
  • Member event: 8
  • Issue comment event: 509
  • Push event: 75
  • Pull request event: 142
  • Pull request review event: 232
  • Pull request review comment event: 106
  • Fork event: 82
Last Year
  • Create event: 11
  • Release event: 4
  • Issues event: 164
  • Watch event: 481
  • Delete event: 4
  • Member event: 8
  • Issue comment event: 509
  • Push event: 75
  • Pull request event: 142
  • Pull request review event: 232
  • Pull request review comment event: 106
  • Fork event: 82

Committers

Last synced: 9 months ago

All Time
  • Total Commits: 960
  • Total Committers: 188
  • Avg Commits per committer: 5.106
  • Development Distribution Score (DDS): 0.88
Past Year
  • Commits: 86
  • Committers: 37
  • Avg Commits per committer: 2.324
  • Development Distribution Score (DDS): 0.884
Top Committers
Name Email Commits
Toby Roseman t****n@a****m 115
Tony Bove 7****e 77
Aseem Wadhwa a****c@g****m 65
Yuduo y****o@a****m 47
jakesabathia2 s****o@a****m 45
Allen Lin s****n@a****m 38
Zach Nation z****n@a****m 38
Yifan Shen y****z@j****u 29
fukatani n****a@g****m 26
Aseem Wadhwa a****a@a****m 24
Zaccharie Ramzi z****e@x****o 23
bhushans_22 b****e@a****m 22
Krishna Sridhar s****r@a****m 20
rehan.rishi r****i@a****m 18
Gustav Larsson g****n@a****m 18
Krishna Sridhar 18
Sohaib Qureshi s****q@a****m 13
junpeiz j****6@g****m 12
DawerG d****h@g****m 10
Gitesh Dawer g****r@a****m 10
Gyanendra Sinha g****a@a****m 8
Mstronach 5****h 7
M_noAria 4****a 7
Chris Kelly g****2@g****m 7
Keith Wyss K****b@g****m 6
Pedro Cuenca p****o@h****o 6
Krishna Sridhar s****a@a****m 6
cpompeo c****o@a****m 5
Richard Wei r****i@g****m 5
Arjun Sharda 7****7 5
and 158 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 507
  • Total pull requests: 483
  • Average time to close issues: 4 months
  • Average time to close pull requests: 14 days
  • Total issue authors: 352
  • Total pull request authors: 82
  • Average comments per issue: 2.82
  • Average comments per pull request: 1.45
  • Merged pull requests: 368
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 131
  • Pull requests: 161
  • Average time to close issues: 8 days
  • Average time to close pull requests: 8 days
  • Issue authors: 94
  • Pull request authors: 35
  • Average comments per issue: 0.95
  • Average comments per pull request: 1.37
  • Merged pull requests: 113
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • YifanShenSZ (12)
  • metascroy (9)
  • 0seba (8)
  • nighting0le01 (8)
  • smpanaro (7)
  • TobyRoseman (7)
  • johan-sightic (5)
  • yuxiaohui78 (5)
  • 119458 (4)
  • xorange (4)
  • atiorh (4)
  • TimYao18 (4)
  • rustui (3)
  • james-p-xu (3)
  • ivyas21 (3)
Pull Request Authors
  • tonybove-apple (72)
  • TobyRoseman (68)
  • YifanShenSZ (59)
  • cymbalrush (20)
  • M-Quadra (16)
  • cpompeo (16)
  • junpeiz (15)
  • aseemw (13)
  • fukatani (11)
  • DawerG (11)
  • metascroy (9)
  • jakesabathia2 (9)
  • johnnynunez (6)
  • smpanaro (6)
  • pcuenca (6)
Top Labels
Issue Labels
bug (260) question (128) triaged (87) PyTorch (traced) (72) feature request (61) missing layer type (33) tf2.x / tf.keras (15) awaiting response (12) Core ML Framework (7) enhancement (7) PyTorch (not traced) (6) duplicate (6) ExecuTorch (5) NN backend only (4) Flexible Shape (3) docs (3) on-device update (3) scikit-learn (3) ct.optimize (3) xgboost (2) torch.export (1) trees (1) LSTM/RNN (1) tf1.x (1) perf (1)
Pull Request Labels
docs (99) ExecuTorch (5) PyTorch (not traced) (4) ct.optimize (2) PyTorch (traced) (2)

Packages

  • Total packages: 4
  • Total downloads:
    • pypi 1,028,557 last-month
  • Total docker downloads: 353,028
  • Total dependent packages: 43
    (may contain duplicates)
  • Total dependent repositories: 690
    (may contain duplicates)
  • Total versions: 58
  • Total maintainers: 3
pypi.org: coremltools

Community Tools for Core ML

  • Versions: 54
  • Dependent Packages: 43
  • Dependent Repositories: 688
  • Downloads: 1,028,557 Last month
  • Docker Downloads: 353,028
Rankings
Dependent packages count: 0.5%
Dependent repos count: 0.5%
Downloads: 0.8%
Docker downloads count: 1.0%
Average: 1.1%
Stargazers count: 1.3%
Forks count: 2.2%
Maintainers (3)
Last synced: 6 months ago
proxy.golang.org: github.com/apple/coremltools
  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Stargazers count: 0.8%
Forks count: 0.8%
Average: 4.5%
Dependent packages count: 7.0%
Dependent repos count: 9.3%
Last synced: 6 months ago
conda-forge.org: coremltools

Core ML is an Apple framework to integrate machine learning models into your app. Use the coremltools Python package to convert models from third-party training libraries such as TensorFlow and PyTorch to the Core ML format. You can then use Core ML to integrate the models into your app. Core ML provides a unified representation for all models. Your app uses Core ML APIs and user data to make predictions, and to fine-tune models, all on the user’s device. Running a model strictly on the user’s device removes any need for a network connection, which helps keep the user’s data private and your app responsive. Core ML optimizes on-device performance by leveraging the CPU, GPU, and Neural Engine while minimizing its memory footprint and power consumption.

  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 1
Rankings
Stargazers count: 7.1%
Forks count: 7.5%
Average: 22.6%
Dependent repos count: 24.3%
Dependent packages count: 51.6%
Last synced: 6 months ago
anaconda.org: coremltools

Core ML is an Apple framework to integrate machine learning models into your app. Use the coremltools Python package to convert models from third-party training libraries such as TensorFlow and PyTorch to the Core ML format. You can then use Core ML to integrate the models into your app. Core ML provides a unified representation for all models. Your app uses Core ML APIs and user data to make predictions, and to fine-tune models, all on the user’s device. Running a model strictly on the user’s device removes any need for a network connection, which helps keep the user’s data private and your app responsive. Core ML optimizes on-device performance by leveraging the CPU, GPU, and Neural Engine while minimizing its memory footprint and power consumption.

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 1
Rankings
Stargazers count: 14.5%
Forks count: 15.2%
Average: 33.1%
Dependent packages count: 51.1%
Dependent repos count: 51.4%
Last synced: 6 months ago

Dependencies

deps/protobuf/Protobuf.podspec cocoapods
deps/protobuf/jenkins/docker/Dockerfile docker
  • debian latest build
deps/protobuf/jenkins/docker32/Dockerfile docker
  • 32bit/debian latest build
deps/protobuf/protoc-artifacts/Dockerfile docker
  • centos 6.6 build
deps/protobuf/java/compatibility_tests/v2.5.0/deps/pom.xml maven
  • junit:junit 4.4
  • org.easymock:easymock 2.2
  • org.easymock:easymockclassextension 2.2.1
deps/protobuf/java/compatibility_tests/v2.5.0/more_protos/pom.xml maven
  • com.google.protobuf.compatibility:compatibility-protos 2.5.0
  • com.google.protobuf:protobuf-java ${more_protos.protobuf.version}
deps/protobuf/java/compatibility_tests/v2.5.0/pom.xml maven
deps/protobuf/java/compatibility_tests/v2.5.0/protos/pom.xml maven
  • com.google.protobuf:protobuf-java ${protos.protobuf.version}
deps/protobuf/java/compatibility_tests/v2.5.0/tests/pom.xml maven
  • com.google.protobuf.compatibility:compatibility-more-protos 2.5.0
  • com.google.protobuf.compatibility:compatibility-protos 2.5.0
  • com.google.protobuf:protobuf-java ${tests.protobuf.version}
  • junit:junit 4.4
  • org.easymock:easymock 2.2
  • org.easymock:easymockclassextension 2.2.1
deps/protobuf/java/core/pom.xml maven
  • com.google.truth:truth test
  • junit:junit test
  • org.easymock:easymock test
  • org.easymock:easymockclassextension test
deps/protobuf/java/lite/pom.xml maven
  • junit:junit
  • org.easymock:easymock
  • org.easymock:easymockclassextension
deps/protobuf/java/pom.xml maven
deps/protobuf/java/util/pom.xml maven
  • com.google.code.gson:gson 2.7
  • com.google.guava:guava
  • com.google.protobuf:protobuf-java 3.3.0
  • junit:junit
  • org.easymock:easymock
  • org.easymock:easymockclassextension
deps/protobuf/javanano/pom.xml maven
  • junit:junit 4.4 test
  • org.easymock:easymock 2.2 test
  • org.easymock:easymockclassextension 2.2.1 test
deps/protobuf/protoc-artifacts/pom.xml maven
deps/protobuf/ruby/pom.xml maven
  • org.jruby:jruby-complete 1.7.13 provided
  • com.fasterxml.jackson.core:jackson-core 2.4.3
  • com.google.protobuf:protobuf-java 3.0.0
deps/protobuf/js/package.json npm
  • glob ~6.0.4 development
  • google-closure-compiler ~20160619.0.0 development
  • google-closure-library ~20160125.0.0 development
  • gulp ~3.9.0 development
  • jasmine ~2.4.1 development
deps/protobuf/csharp/Google.Protobuf.Tools.nuspec nuget
deps/protobuf/composer.json packagist
  • phpunit/phpunit >=4.8.0 development
  • php >=5.5.0
deps/protobuf/php/composer.json packagist
  • phpunit/phpunit >=4.8.0 development
  • php >=5.5.0
deps/kmeans1d/setup.py pypi
deps/protobuf/python/compatibility_tests/v2.5.0/setup.py pypi
  • setuptools *
  • six >=1.9
deps/protobuf/python/setup.py pypi
  • setuptools *
  • six >=1.9
deps/pybind11/docs/requirements.txt pypi
  • breathe ==4.34.0
  • furo ==2022.6.21
  • sphinx ==5.0.2
  • sphinx-copybutton ==0.5.0
  • sphinxcontrib-moderncmakedomain ==3.21.4
  • sphinxcontrib-svg2pdfconverter ==1.2.0
deps/pybind11/pyproject.toml pypi
deps/pybind11/setup.py pypi
deps/pybind11/tests/requirements.txt pypi
  • build ==0.8.0 test
  • numpy ==1.21.5 test
  • numpy ==1.19.3 test
  • numpy ==1.22.2 test
  • pytest ==7.0.0 test
  • pytest-timeout * test
  • scipy ==1.5.4 test
  • scipy ==1.8.0 test
deps/pybind11/tools/pyproject.toml pypi
setup.py pypi
  • attrs >=21.3.0
  • cattrs *
  • numpy *
  • packaging *
  • protobuf *
  • pyaml *
  • sympy *
  • tqdm *
deps/protobuf/ruby/Gemfile rubygems
deps/protobuf/ruby/google-protobuf.gemspec rubygems
  • rake-compiler ~> 0.9.5 development
  • rake-compiler-dock ~> 0.6.0 development
  • rubygems-tasks ~> 0.2.4 development
  • test-unit ~> 3.0, >= 3.0.9 development
deps/pybind11/docs/environment.yml conda
  • doxygen
  • pip
  • python 3.5