disc
A highly scalable and accurate inference of gene expression and structure for single-cell transcriptomes using semi-supervised deep learning.
Science Score: 23.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
○codemeta.json file
-
○.zenodo.json file
-
✓DOI references
Found 2 DOI reference(s) in README -
✓Academic publication links
Links to: ncbi.nlm.nih.gov -
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (13.0%) to scientific vocabulary
Keywords
deep-learning
imputation
semi-supervised-learning
single-cell
transcriptome
Last synced: 6 months ago
·
JSON representation
Repository
A highly scalable and accurate inference of gene expression and structure for single-cell transcriptomes using semi-supervised deep learning.
Basic Info
Statistics
- Stars: 10
- Watchers: 1
- Forks: 5
- Open Issues: 0
- Releases: 0
Topics
deep-learning
imputation
semi-supervised-learning
single-cell
transcriptome
Created over 6 years ago
· Last pushed almost 5 years ago
Metadata Files
Readme
License
README.rst
DISC
====
|PyPI|
.. |PyPI| image:: https://img.shields.io/pypi/v/DISC.svg
:target: https://pypi.org/project/disc
A highly scalable and accurate inference of gene expression and structure for single-cell transcriptomes using semi-supervised deep learning.
* Free software: Apache License 2.0
Requirements
------------
- Python_ >=3.6
- TensorFlow_ >=1.13.1,<2.0.0
- numpy_ >=1.14.0
- pandas_ >=0.21.0
- h5py_ >=2.9.0
- matplotlib_ >=3.0.0
Installation
------------
- **Install TensorFlow**
If you have an Nvidia GPU, be sure to install a version of TensorFlow that supports it first -- DISC runs much faster with GPU::
pip install "tensorflow-gpu>= 1.13.1,<2.0.0"
We typically tensorflow-gpu==1.13.1.
Here are requirements for GPU version TensorFlow_::
* Hardware
* NVIDIA GPU card with CUDA Compute Capability 3.5 or higher.
* Software
* NVIDIA GPU drivers - CUDA 10.0 requires 410.x or higher.
* CUDA Toolkit - TensorFlow_ supports CUDA 10.0 (TensorFlow >= 1.13.0)
* CUPTI ships with the CUDA Toolkit.
* cuDNN SDK (>= 7.4.1)
See this__ for further information.
.. __: https://www.tensorflow.org/install/gpu
- **Install DISC with pip**
To install with ``pip``, run the following from a terminal::
pip install disc
- **Install DISC from GitHub**
To clone the repository and install manually, run the following from a terminal::
git clone git://github.com/iyhaoo/DISC.git
cd disc
python setup.py install
Usage
-----
- **Quick Start**
**(1). How to run DISC**::
disc \
--dataset=matrix.loom \
--out-dir=out_dir
where ``matrix.loom`` is a `loom-formatted`_ raw count matrix with genes in rows and cells in columns and ``out_dir`` is the target path for output folder.
**(2). What DISC outputs**:
* ``log.tsv``: records DISC training information.
* ``summary.pdf``: shows the fitting line and optimal point and will be updated in real time when DISC is running.
* ``summary.tsv``: records the raw data in ``summary.pdf``.
* ``result``: imputaion result folder, which contains:
* ``imputation.loom``: the imputed matrix with genes in rows and cells in columns.
* ``feature.loom``: the feature matrix with feature in rows and cells in columns.
* ``running_info.hdf5``: a `hdf5-formatted`_ file, contains some useful information of ``matrix.loom`` (e.g. library size, the expressed counts and cells for each genes, imputed genes, etc.).
* ``models``: For every save interval, DISC freezes its parameters into this folder (in `pb`_ format).
- **Data availability**
The sources of our data are listed here.
* MELANOMA :
8,640 cells from the melanoma WM989 cell line were sequenced
using Drop-seq, where 32,287 genes were detected (`scRNA-seq`__).
In addition, RNA FISH experiment of across 7,000-88,000 cells
from the same cell line was conducted and 26 genes were detected (`FISH`__).
.. __: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99330
.. __: https://www.dropbox.com/s/ia9x0iom6dwueix/fishSubset.txt?dl=0
* SSCORTEX :
Mouse somatosensory cortex of CD-1 mice at age of p28 and p29
were profiled by 10X where 7,477 cells were detected (`scRNA-seq`__).
In addition, osmFISH experiment of 4,839 cells from somatosensory
cortex, hippocampus and ventricle of a CD-1 mouse at age of p22 was
conducted and 33 genes were detected (`FISH`__).
.. __: http://loom.linnarssonlab.org/clone/Mousebrain.org.level1/L1_Cortex2.loom
.. __: http://linnarssonlab.org/osmFISH/availability/
* CBMC :
Cord blood mononuclear cells were profiled by CITE-seq, where
8,005 human cells were detected in total (`scRNA-seq`__).
.. __: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100866
* PBMC :
2,700 freeze-thaw peripheral blood mononuclear cells (PBMC) from
a healthy donor were profiled by 10X, where 32,738 genes
were detect (`scRNA-seq`__).
.. __: https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/frozen_pbmc_donor_a
* JURKAT_293T :
3258 jurkat cells (`scRNA-seq`__) and 2885 293T cells
(`scRNA-seq`__) were profiled by 10X separately.
This dataset has bulk RNA-seq data (`bulk RNA-seq`__).
.. __: https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat
.. __: https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t
.. __: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129240
* 10X_5CL :
5,001 cells from 5 human lung adenocarcinoma cell lines H2228,
H1975, A549, H838 and HCC827 were profiled by 10X (`scRNA-seq`__).
This dataset has bulk RNA-seq data (`bulk RNA-seq`__).
.. __: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126906
.. __: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86337
* BONE_MARROW :
6,941 human bone marrow cells from sample MantonBM6 were profiled by 10X.
The original single-cell RNA sequencing data provided by `HCA`__ was
aligned to hg19, 6939 cells left after cell filtering (`scRNA-seq`__).
This dataset has bulk RNA-seq data (`bulk RNA-seq`__).
.. __: https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79
.. __: https://doc-04-6g-docs.googleusercontent.com/docs/securesc/rm132bl2k8nvnlftqa8a8d5p239lbngf/6o5dsruhjpmecgnkd0nn4b1ak3ss8ufd/1588554075000/07888005335114604629/01857410241295225190/1euh8YB8ThSLHJNQMTCuuKp_nRiME1KzN?e=download&authuser=0&nonce=7apqnnaq9bch8&user=01857410241295225190&hash=a60rd66gq56e0af1vc5ua60146t3gq7m
.. __: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74246
* RETINA :
Retinas of mice at age of p14 were profiled in 7 different replicates
on by Drop-seq, where 6,600, 9,000, 6,120, 7,650, 7,650, 8280, and
4000 (49,300 in total) STAMPs (single-cell transcriptomes attached
to micro-particles) were collected (`scRNA-seq`__). The dataset has
`cell annotation`__.
.. __: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63472
.. __: http://mccarrolllab.org/wp-content/uploads/2015/05/retina_clusteridentities.txt
* BRAIN_SPLiT :
156,049 mice nuclei from developing brain and spinal cord at
age of p2 or p11 mice were profiled by SPLiT-seq (`scRNA-seq`__).
The cell annotation of this dataset is included in file
GSM3017261_150000_CNS_nuclei.mat.gz at the same GEO page.
.. __: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110823
* BRAIN_1.3M :
1,306,127 cells from combined cortex, hippocampus,
and subventricular zone of 2 E18 C57BL/6 mice were
profiled by 10X (`scRNA-seq`__).
.. __: https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
We provide our pre-processed data here__.
.. __: https://github.com/iyhaoo/DISC_data_availability
+------------------+------------------+------------------+------------------+------------------+----------------------+
|Dataset |Raw Data |DS Data |FISH Data |Bulk Data |Cell Type Annotation |
+==================+==================+==================+==================+==================+======================+
|`MELANOMA`__ |`YES`__ |`0.5`__ |`YES`__ |NO |NO |
+------------------+------------------+------------------+------------------+------------------+----------------------+
|`SSCORTEX`__ |`YES`__ |`0.5`__ |`YES`__ |NO |NO |
+------------------+------------------+------------------+------------------+------------------+----------------------+
|`CBMC`__ |`YES`__ |`0.5`__ |NO |NO |NO |
+------------------+------------------+------------------+------------------+------------------+----------------------+
|`PBMC`__ |`YES`__ |`0.3`__, `0.5`__ |NO |NO |`YES`__ |
+------------------+------------------+------------------+------------------+------------------+----------------------+
|`JURKAT_293T`__ |`YES`__ |NO |NO |`YES`__ |NO |
+------------------+------------------+------------------+------------------+------------------+----------------------+
|`10X_5CL`__ |`YES`__ |NO |NO |`YES`__ |NO |
+------------------+------------------+------------------+------------------+------------------+----------------------+
|`BONE_MARROW`__ |`YES`__ |NO |NO |`YES`__ |`YES`__ |
+------------------+------------------+------------------+------------------+------------------+----------------------+
|`RETINA`__ |`YES`__ |`0.3`__, `0.5`__ |NO |NO |`YES`__ |
+------------------+------------------+------------------+------------------+------------------+----------------------+
|`BRAIN_SPLiT`__ |`YES`__ |`0.3`__, `0.5`__ |NO |NO |`YES`__ |
+------------------+------------------+------------------+------------------+------------------+----------------------+
|`BRAIN_1.3M`__ |NO (Too large) |NO |NO |NO |`Clustering Result`__ |
+------------------+------------------+------------------+------------------+------------------+----------------------+
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/MELANOMA
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/MELANOMA/raw.loom
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/MELANOMA/ds_0.5
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/MELANOMA/fish.loom
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/SSCORTEX
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/SSCORTEX/raw.loom
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/SSCORTEX/ds_0.5
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/SSCORTEX/fish.loom
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/CBMC
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/CBMC/raw.loom
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/CBMC/ds_0.5
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/PBMC
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/PBMC/raw.loom
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/PBMC/ds_0.3
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/PBMC/ds_0.5
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/PBMC/cell_type.rds
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/JURKAT_293T
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/JURKAT_293T/raw.loom
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/JURKAT_293T/bulk.loom
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/10X_5CL
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/10X_5CL/raw.loom
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/10X_5CL/bulk.loom
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/BONE_MARROW
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/BONE_MARROW/raw.loom
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/BONE_MARROW/bulk.loom
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/BONE_MARROW/cell_type.rds
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/RETINA
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/RETINA/raw.loom.gz
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/RETINA/ds_0.3
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/RETINA/ds_0.5
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/RETINA/cell_type.rds
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/BRAIN_SPLiT
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/BRAIN_SPLiT
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/BRAIN_SPLiT/ds_0.3
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/BRAIN_SPLiT/ds_0.5
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/BRAIN_SPLiT/cell_type.rds
.. __: https://github.com/iyhaoo/DISC_data_availability/tree/master/BRAIN_1.3M
.. __: https://github.com/iyhaoo/DISC_data_availability/blob/master/BRAIN_1.3M/clustering_result.txt.gz
- **Evaluations**
* Data Preparation, Imputation and Computational Resource Evaluation
(1). Data Pre-processing
+------------------+------------------+------------------+------------------+------------------+
|`MELANOMA`__ |`SSCORTEX`__ |`PBMC`__ |`CBMC`__ |`JURKAT_293T`__ |
+------------------+------------------+------------------+------------------+------------------+
|`10X_5CL`__ |`BONE_MARROW`__ |`RETINA`__ |`BRAIN_SPLiT`__ |`BRAIN_1.3M`__ |
+------------------+------------------+------------------+------------------+------------------+
.. __: https://nbviewer.jupyter.org/github/iyhaoo/DISC/blob/master/reproducibility/Data%20Preparation%2C%20Imputation%20and%20Computational%20Resource%20Evaluation/Data%20Pre-processing/MELANOMA.ipynb
.. __: https://nbviewer.jupyter.org/github/iyhaoo/DISC/blob/master/reproducibility/Data%20Preparation%2C%20Imputation%20and%20Computational%20Resource%20Evaluation/Data%20Pre-processing/SSCORTEX.ipynb
.. __: https://raw.githack.com/iyhaoo/DISC/master/reproducibility/Data%20Preparation,%20Imputation%20and%20Computational%20Resource%20Evaluation/Data%20Pre-processing/PBMC.nb.html
.. __: https://raw.githack.com/iyhaoo/DISC/master/reproducibility/Data%20Preparation,%20Imputation%20and%20Computational%20Resource%20Evaluation/Data%20Pre-processing/CBMC.nb.html
.. __: https://raw.githack.com/iyhaoo/DISC/master/reproducibility/Data%20Preparation,%20Imputation%20and%20Computational%20Resource%20Evaluation/Data%20Pre-processing/JURKAT_293T.nb.html
.. __: https://raw.githack.com/iyhaoo/DISC/master/reproducibility/Data%20Preparation,%20Imputation%20and%20Computational%20Resource%20Evaluation/Data%20Pre-processing/10X_5CL.nb.html
.. __: https://raw.githack.com/iyhaoo/DISC/master/reproducibility/Data%20Preparation,%20Imputation%20and%20Computational%20Resource%20Evaluation/Data%20Pre-processing/BONE_MARROW.nb.html
.. __: https://raw.githack.com/iyhaoo/DISC/master/reproducibility/Data%20Preparation,%20Imputation%20and%20Computational%20Resource%20Evaluation/Data%20Pre-processing/RETINA.nb.html
.. __: https://nbviewer.jupyter.org/github/iyhaoo/DISC/blob/master/reproducibility/Data%20Preparation%2C%20Imputation%20and%20Computational%20Resource%20Evaluation/Data%20Pre-processing/BRAIN_SPLiT.ipynb
.. __: https://github.com/iyhaoo/DISC/tree/master/reproducibility/Data%20Preparation%2C%20Imputation%20and%20Computational%20Resource%20Evaluation/Data%20Pre-processing/BRAIN_1.3M
(2). `Imputation`__
.. __: https://github.com/iyhaoo/DISC/blob/master/reproducibility/Data%20Preparation%2C%20Imputation%20and%20Computational%20Resource%20Evaluation/Run%20Imputation.md
(3). Computational Resource Evaluation (`Results`__, `Test Program`__)
.. __: https://raw.githack.com/iyhaoo/DISC/master/reproducibility/Data%20Preparation%2C%20Imputation%20and%20Computational%20Resource%20Evaluation/Computational%20Resource%20Evaluation/Show%20Results.nb.html
.. __: https://github.com/iyhaoo/DISC/blob/master/reproducibility/source/memusg
* Data Structure Recovery Evaluation
(1). Gene Expression Structures (FISH)
* Tutorial : `MELANOMA`__
.. __: https://raw.githack.com/iyhaoo/DISC/master/reproducibility/Data%20Structure%20Recovery%20Evaluation/Gene%20Expression%20Structures_MELANOMA.nb.html
(2). Gene and Cell Structures (Down-sampling)
* Tutorial : `MELANOMA`__
.. __: https://raw.githack.com/iyhaoo/DISC/master/reproducibility/Data%20Structure%20Recovery%20Evaluation/Dropout_event_recovery_MELANOMA.nb.html
(S1). Spearman Correlation (Bulk)
* Tutorial : `JURKAT_293T`__
.. __: https://raw.githack.com/iyhaoo/DISC/master/reproducibility/Data%20Structure%20Recovery%20Evaluation/Spearman%20Correlation%20between%20SC%20and%20Bulk.nb.html
(S2). Identification of True Zeros (Down-sampling)
* Tutorial : `MELANOMA, SSCORTEX, CBMC and PBMC`__
.. __: https://raw.githack.com/iyhaoo/DISC/master/reproducibility/Data%20Structure%20Recovery%20Evaluation/Identification%20of%20True%20Zeros.nb.html
* Down-stream Analysis Improvement:
(1). Cell Type Identification (Down-sampling)
* Tutorial : `PBMC`__
.. __: https://raw.githack.com/iyhaoo/DISC/master/reproducibility/Down-stream%20Analysis%20Improvement/Cell%20Type%20Identification_PBMC.nb.html
(2). DEG Identification (Bulk)
* Tutorial : `JURKAT_293T`__
.. __: https://raw.githack.com/iyhaoo/DISC/master/reproducibility/Down-stream%20Analysis%20Improvement/DEG%20Identification.nb.html
(3). Solution for Large Dataset Analysis
* Tutorial : `PBMC`__
.. __: https://raw.githack.com/iyhaoo/DISC/master/reproducibility/Down-stream%20Analysis%20Improvement/Solution%20for%20Large%20Dataset%20Analysis_PBMC.nb.html
(S1). Trajectory Analysis
Tutorial : `BONE_MARROW`__
.. __: https://raw.githack.com/iyhaoo/DISC/master/reproducibility/Down-stream%20Analysis%20Improvement/Trajectory%20Analysis.nb.html
* Other Utility Scripts
+------------------+------------------+------------------+
|Script |Output |
+==================+==================+==================+
|`Violin Plot`__ |`PBMC`__ |`RETINA`__ |
+------------------+------------------+------------------+
.. __: https://github.com/iyhaoo/DISC/blob/master/reproducibility/Other%20Utility%20Scripts/violin_plot.py
.. __: https://github.com/iyhaoo/DISC/blob/master/reproducibility/results/PBMC/violin_plot.pdf
.. __: https://github.com/iyhaoo/DISC/blob/master/reproducibility/results/RETINA/violin_plot.pdf
References
----------
*Yao He*:sup:`#`,
*Hao Yuan*:sup:`#`,
*Cheng Wu*:sup:`#`,
*Zhi Xie*:sup:`*`.
DISC: a highly scalable and accurate inference of gene expression and structure for single-cell transcriptomes using semi-supervised deep learning.
*Genome Biology*
**21,**
170 (2020).
https://doi.org/10.1186/s13059-020-02083-3
History
-------
1.1 (2020-06-06)
^^^^^^^^^^^^^^^^
* Update CLI.
1.0 (2019-12-16)
^^^^^^^^^^^^^^^^^^
* First release on PyPI_.
.. _Python: https://www.python.org/downloads/
.. _TensorFlow: https://www.tensorflow.org/
.. _numpy: https://numpy.org/
.. _pandas: https://pandas.pydata.org/
.. _h5py: https://www.h5py.org/
.. _matplotlib: https://matplotlib.org/
.. _`hdf5-formatted`: https://www.hdfgroup.org/solutions/hdf5/
.. _`Data availability`: https://github.com/iyhaoo/DISC_data_availability/
.. _`loom-formatted`: http://loompy.org/
.. _`pb`: https://www.tensorflow.org/guide/saved_model/
.. _`RDS-formatted`: https://stat.ethz.ch/R-manual/R-devel/library/base/html/readRDS.html
.. _`Run imputation`: https://github.com/iyhaoo/DISC/blob/master/reproducibility/data_preparation_and_imputation/run_imputation.md
.. _PyPI: https://pypi.org/project/disc/
Owner
- Name: Hao Yuan
- Login: iyhaoo
- Kind: user
- Location: Solna, Stockholm, Sweden
- Company: Karolinska Institutet
- Repositories: 2
- Profile: https://github.com/iyhaoo
MSCA PhD Student
GitHub Events
Total
Last Year
Committers
Last synced: over 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| iyhaoo | t****o@g****m | 329 |
| Hao Yuan | 9****2@q****m | 118 |
Committer Domains (Top 20 + Academic)
qq.com: 1
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 3
- Total pull requests: 4
- Average time to close issues: 1 day
- Average time to close pull requests: 1 minute
- Total issue authors: 3
- Total pull request authors: 2
- Average comments per issue: 1.67
- Average comments per pull request: 0.25
- Merged pull requests: 1
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- dalcsy (1)
- Roger-GOAT (1)
- kundr (1)
Pull Request Authors
- iyhaoo (2)
- ghost (2)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 194 last-month
- Total dependent packages: 0
- Total dependent repositories: 1
- Total versions: 14
- Total maintainers: 1
pypi.org: disc
A highly scalable and accurate inference of gene expression and structure for single-cell transcriptomes using semi-supervised deep learning.
- Homepage: https://github.com/iyhaoo/DISC
- Documentation: https://disc.readthedocs.io/
- License: Apache License 2.0
-
Latest release: 1.1.6
published almost 5 years ago
Rankings
Dependent packages count: 10.0%
Downloads: 10.1%
Forks count: 14.2%
Average: 14.6%
Stargazers count: 17.1%
Dependent repos count: 21.7%
Maintainers (1)
Last synced:
6 months ago