jetset

JetSeT a framework for self-consistent modeling and fitting of astrophysical relativistic jets

https://github.com/andreatramacere/jetset

Science Score: 36.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
    2 of 7 committers (28.6%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (12.9%) to scientific vocabulary

Keywords

agn astrophysics blazar data-analysis model-fitting plasma-temporal-evolution relativistic-jets stochastic-acceleration
Last synced: 6 months ago · JSON representation

Repository

JetSeT a framework for self-consistent modeling and fitting of astrophysical relativistic jets

Basic Info
  • Host: GitHub
  • Owner: andreatramacere
  • License: bsd-3-clause
  • Language: Python
  • Default Branch: master
  • Homepage:
  • Size: 301 MB
Statistics
  • Stars: 36
  • Watchers: 3
  • Forks: 14
  • Open Issues: 8
  • Releases: 32
Topics
agn astrophysics blazar data-analysis model-fitting plasma-temporal-evolution relativistic-jets stochastic-acceleration
Created about 7 years ago · Last pushed 7 months ago
Metadata Files
Readme License

README.md

pip test conda test img

JetSeT is an open source C/Python framework to reproduce radiative and accelerative processes acting in relativistic jets, and galactic objects (beamed and unbeamed), allowing to fit the numerical models to observed data. The main features of this framework are:

  • handling observed data: re-binning, definition of data sets, bindings to astropy tables and quantities definition of complex numerical radiative scenarios: Synchrotron Self-Compton (SSC), external Compton (EC) and EC against the CMB

  • Constraining of the model in the pre-fitting stage, based on accurate and already published phenomenological trends. In particular, starting from phenomenological parameters, such as spectral indices, peak fluxes and frequencies, and spectral curvatures, that the code evaluates automatically, the pre-fitting algorithm is able to provide a good starting model,following the phenomenological trends that I have implemented. fitting of multiwavelength SEDs using
    both frequentist approach (iminuit) and bayesian MCMC sampling (emcee)

  • Self-consistent temporal evolution of the plasma under the effect of radiative, accelerative processes, and adiabatic expansion. Both first order and second order (stochastic acceleration) processes are implemented.

Acknowledgements

If you use this code in any kind of scientific publication please cite the following papers:

  • Tramacere A. 2020 https://ui.adsabs.harvard.edu/abs/2020ascl.soft09001T/abstract
  • Tramacere A. et al. 2011 http://adsabs.harvard.edu/abs/2011ApJ...739...66T
  • Tramacere A. et al. 2009 http://adsabs.harvard.edu/abs/2009A%26A...501..879T

Documentation

visit: https://jetset.readthedocs.io/en/latest/

run the notebook on binder: Binder

Installation

Read the documentation for further details (e.g. installing form source etc...) here

Install JetSeT from Anaconda

  • create a virtual environment (not necessary, but suggested):

    conda create --name jetset python=3.10 ipython jupyter

    conda activate jetset

    • install the code:

conda install -c andreatramacere jetset

Install JetSeT from pip

  • create a virtual environment (not necessary, but suggested):

pip install virtualenv

virtualenv -p python3.10 jetset

source jetset/bin/activate

pip install ipython jupyter

  • install the code:

pip install jetset>=1.3

Licence

JetSeT is released under a 3-clause BSD license, for deatils see License file

Owner

  • Name: andrea tramacere
  • Login: andreatramacere
  • Kind: user

I am scientist and data scientist, at the Astronomy department of the University of Geneva, working on high energy astrophysics and data science

GitHub Events

Total
  • Release event: 1
  • Issues event: 7
  • Watch event: 6
  • Issue comment event: 13
  • Push event: 30
Last Year
  • Release event: 1
  • Issues event: 7
  • Watch event: 6
  • Issue comment event: 13
  • Push event: 30

Committers

Last synced: over 2 years ago

All Time
  • Total Commits: 1,105
  • Total Committers: 7
  • Avg Commits per committer: 157.857
  • Development Distribution Score (DDS): 0.51
Past Year
  • Commits: 0
  • Committers: 0
  • Avg Commits per committer: 0.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
andreatramacere a****e@g****m 541
andrea tramacere o****n@M****l 537
andrea tramacere o****n@e****e 14
Andrea TRAMACERE a****e@u****h 7
andrea tramacere o****n@d****t 3
andrea tramacere o****n@M****e 2
J. Michael Burgess j****s@g****m 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 25
  • Total pull requests: 65
  • Average time to close issues: 6 months
  • Average time to close pull requests: 3 days
  • Total issue authors: 18
  • Total pull request authors: 3
  • Average comments per issue: 5.8
  • Average comments per pull request: 0.06
  • Merged pull requests: 62
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 5
  • Pull requests: 0
  • Average time to close issues: about 5 hours
  • Average time to close pull requests: N/A
  • Issue authors: 4
  • Pull request authors: 0
  • Average comments per issue: 2.4
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • cosimoNigro (4)
  • sona-patel (2)
  • mireianievas (2)
  • lheckmann (2)
  • Ayon2001 (2)
  • LockieOu (1)
  • Kisgithub (1)
  • Noatino (1)
  • bluecandyrain (1)
  • AnuvabAstro (1)
  • krishnamohana (1)
  • andreatramacere (1)
  • astro-fermi (1)
  • mmanganaro (1)
  • basuparth (1)
Pull Request Authors
  • andreatramacere (64)
  • AlexKurek (2)
  • grburgess (1)
Top Labels
Issue Labels
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 114 last-month
  • Total dependent packages: 0
  • Total dependent repositories: 1
  • Total versions: 6
  • Total maintainers: 1
pypi.org: jetset

A framework for self-consistent modeling and fitting of astrophysical relativistic jets SEDs

  • Versions: 6
  • Dependent Packages: 0
  • Dependent Repositories: 1
  • Downloads: 114 Last month
Rankings
Forks count: 9.6%
Dependent packages count: 10.0%
Stargazers count: 12.4%
Average: 15.8%
Dependent repos count: 21.7%
Downloads: 25.1%
Maintainers (1)
Last synced: 6 months ago

Dependencies

doc/requirements.txt pypi
  • astropy >=4.0,<=5
  • corner *
  • dill *
  • emcee >=3.0.0
  • future *
  • graphviz *
  • iminuit *
  • ipython *
  • jupyter *
  • matplotlib >=3.1.0
  • mock *
  • nbsphinx *
  • numba >0.55
  • numpy >=1.18,<1.22
  • numpydoc *
  • pytest *
  • pyyaml *
  • scipy >=1.5.0
  • setuptools *
  • six *
  • sphinx-automodapi *
  • sphinx-bootstrap-theme *
  • sphinx-gallery *
  • sphinx-nbexamples *
  • sphinx_rtd_theme >=0.3.1
  • sphinxcontrib-bibtex *
  • tqdm *
.github/workflows/test-conda-workflow.yml actions
  • actions/checkout v2 composite
  • s-weigand/setup-conda v1 composite
.github/workflows/test-pip-workflow.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
Dockerfile docker
  • python 3.8-slim build
requirements.txt pypi
  • astropy >=4.0,<=5
  • corner *
  • dill *
  • emcee >=3.0.0
  • future *
  • iminuit >=2.0.0
  • ipython *
  • jupyter *
  • matplotlib >=3.1.0
  • numba >0.55
  • numpy >=1.18,<1.22
  • pytest *
  • pyyaml *
  • scipy >=1.5.0
  • setuptools *
  • six *
  • tqdm *
requirements_docker.txt pypi
  • astropy >=4.0,<=5
  • corner *
  • dill *
  • emcee >3.0.0
  • future *
  • iminuit >=2.0.0
  • matplotlib >3.1.0
  • numba >0.55
  • numpy >=1.18,<1.22
  • pytest *
  • pyyaml *
  • scipy *
  • setuptools *
  • six *
  • tqdm *
setup.py pypi
.github/workflows/old/build-conda-workflow-dispatch.yml actions
  • actions/checkout v2 composite
  • s-weigand/setup-conda v1 composite
  • softprops/action-gh-release v1 composite
.github/workflows/old/build-pip-workflow-dispatch.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
  • softprops/action-gh-release v1 composite
.github/workflows/old/test-workflow.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
.github/workflows/requirements_to_conda_yml.py actions
old/environment.yaml pypi