hyperspectral-regression

Code examples for the book chapter "Supervised, Semi-Supervised and Unsupervised Learning for Hyperspectral Regression".

https://github.com/felixriese/hyperspectral-regression

Science Score: 77.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 17 DOI reference(s) in README
  • Academic publication links
    Links to: zenodo.org
  • Committers with academic emails
    1 of 3 committers (33.3%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (11.3%) to scientific vocabulary

Keywords

book-chapter hyperspectral python semi-supervised-learning supervised-learning unsupervised-learning
Last synced: 6 months ago · JSON representation ·

Repository

Code examples for the book chapter "Supervised, Semi-Supervised and Unsupervised Learning for Hyperspectral Regression".

Basic Info
Statistics
  • Stars: 27
  • Watchers: 1
  • Forks: 5
  • Open Issues: 0
  • Releases: 2
Topics
book-chapter hyperspectral python semi-supervised-learning supervised-learning unsupervised-learning
Created over 6 years ago · Last pushed over 2 years ago
Metadata Files
Readme Changelog License Citation

README.rst

.. image:: https://img.shields.io/github/license/felixriese/hyperspectral-regression
    :target: LICENSE
    :alt: License: BSD-3-Clause

.. image:: https://mybinder.org/badge_logo.svg
    :target: https://mybinder.org/v2/gh/felixriese/hyperspectral-regression/master?filepath=notebooks
    :alt: MyBinder

.. image:: https://travis-ci.com/felixriese/hyperspectral-regression.svg?branch=master
    :target: https://travis-ci.com/felixriese/hyperspectral-regression
    :alt: Travis.CI Status

.. image:: https://codecov.io/gh/felixriese/hyperspectral-regression/branch/master/graph/badge.svg
    :target: https://codecov.io/gh/felixriese/hyperspectral-regression
    :alt: Codecov

.. image:: https://api.codacy.com/project/badge/Grade/6808eea2d5984c7d8364f7659b40f9ea
    :target: https://www.codacy.com/manual/felixriese/hyperspectral-regression?utm_source=github.com&utm_medium=referral&utm_content=felixriese/hyperspectral-regression&utm_campaign=Badge_Grade
    :alt: Codacy Status

Hyperspectral Regression: Code Examples
===============================================

This repository consists of additional material and exemplary implementations for our book chapter.

The code in this repository is provided via notebooks. The notebooks are structured as follows:

1. `Data `_
2. `Features `_
3. `Supervised Learning `_
4. `Active Learning `_
5. `Model Selection and Evaluation `_
6. `Generative Adversarial Networks `_

Description
-----------



:License:
    `3-Clause BSD license `_

:Authors:
    `Felix M. Riese `_, `Sina Keller `_

:Citation:
    see `Citation`_

:Paper:
    `Riese and Keller (2020) `_

:Requirements:
    Python 3 with these `packages `_


How to use this repository?
---------------------------

1. Install Python 3, e.g. with `Anaconda `_

2. Install the required packages

    conda install --file requirements.txt

3. Start jupyter

    jupyter notebook

4. Open the notebook folder in this repository in the Jupyter browser and select the desired notebook.

----

Citation
--------

The bibtex file including both references is available in `bibliography.bib
`_.

**Paper:**

Felix M. Riese and Sina Keller, "Supervised, Semi-Supervised, and Unsupervised
Learning for Hyperspectral Regression", in *Hyperspectral Image Analysis:
Advances in Machine Learning and Signal Processing*, Saurabh Prasad and Jocelyn
Chanussot, Eds. Cham: Springer International Publishing, 2020, ch. 7,
pp. 187–232, `doi:10.1007/978-3-030-38617-7_7 `_.

.. code:: bibtex

    @incollection{riese2020supervised,
        author = {Riese, Felix~M. and Keller, Sina},
        title ={{Supervised, Semi-Supervised, and Unsupervised Learning for
                Hyperspectral Regression}},
        booktitle = {{Hyperspectral Image Analysis: Advances in Machine
                     Learning and Signal Processing}},
        editor = {Prasad, Saurabh and Chanussot, Jocelyn},
        year = {2020},
        publisher = {Springer International Publishing},
        address = {Cham},
        chapter = {7},
        pages = {187--232},
        doi = {10.1007/978-3-030-38617-7_7},
    }

**Code:**

Felix M. Riese and Sina Keller, "Hyperspectral Regression: Code Examples",
Zenodo, `doi:10.5281/zenodo.3450676 `_,
2019.

.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3450676.svg
    :target: https://doi.org/10.5281/zenodo.3450676
    :alt: DOI

.. code:: bibtex

    @misc{riese2019hyperspectral,
        author = {Riese, Felix~M. and Keller, Sina},
        title = {{Hyperspectral Regression: Code Examples}},
        year = {2019},
        DOI = {10.5281/zenodo.3450676},
        publisher = {Zenodo},
        howpublished = {\href{https://doi.org/10.5281/zenodo.3450676}{doi.org/10.5281/zenodo.3450676}}
    }

Owner

  • Name: Dr. Felix Riese
  • Login: felixriese
  • Kind: user
  • Location: Munich, Germany
  • Company: @Peter-Park-Systems-GmbH

Ph.D. & MBA | Head of Product | Physicist with 9+ Years in Data Science and Machine Learning | First-Principles Thinking

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite both the article from preferred-citation and the software itself."
authors:
  - family-names: Riese
    given-names: Felix M.
    orcid: https://orcid.org/0000-0003-0596-9585
  - family-names: Keller
    given-names: Sina
    orcid: https://orcid.org/0000-0002-7710-5316
title: "Hyperspectral Regression: Code Examples"
version: 1.0.0
doi: "10.5281/zenodo.3450676"
date-released: 2019-09-19
repository-code: https://github.com/felixriese/hyperspectral-regression
license: BSD-3-Clause
preferred-citation:
  authors:
    - family-names: Riese
      given-names: Felix M.
    - family-names: Keller
      given-names: Sina
  title: "Supervised, Semi-Supervised, and Unsupervised Learning for Hyperspectral Regression"
  type: book
  year: 2020
  doi: "10.1007/978-3-030-38617-7_7"
  publisher:
    - name: "Springer International Publishing"
    - Publications city: "Cham"
  collection-title: "Hyperspectral Image Analysis: Advances in Machine Learning and Signal Processing"
  start: 187
  end: 232

GitHub Events

Total
Last Year

Committers

Last synced: about 2 years ago

All Time
  • Total Commits: 30
  • Total Committers: 3
  • Avg Commits per committer: 10.0
  • Development Distribution Score (DDS): 0.5
Past Year
  • Commits: 1
  • Committers: 1
  • Avg Commits per committer: 1.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Felix Riese f****e@k****u 15
Felix M. Riese m****l@f****e 12
Sina Keller 3****r 3
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: about 2 years ago

All Time
  • Total issues: 0
  • Total pull requests: 4
  • Average time to close issues: N/A
  • Average time to close pull requests: about 6 hours
  • Total issue authors: 0
  • Total pull request authors: 1
  • Average comments per issue: 0
  • Average comments per pull request: 0.5
  • Merged pull requests: 4
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 1
  • Average time to close issues: N/A
  • Average time to close pull requests: 1 day
  • Issue authors: 0
  • Pull request authors: 1
  • Average comments per issue: 0
  • Average comments per pull request: 1.0
  • Merged pull requests: 1
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
  • felixriese (4)
Top Labels
Issue Labels
Pull Request Labels

Dependencies

requirements.txt pypi
  • bayesian-optimization *
  • codecov *
  • ipywidgets *
  • jupyter *
  • matplotlib *
  • modAL *
  • nbval >=0.9.3
  • notebook >=6.0.0
  • pandas *
  • patchify *
  • pytest >=5.1.1
  • pytest-cov *
  • scipy <1.8.0
  • seaborn *
  • susi *
  • tensorflow >=2.5.0
  • tqdm *
  • umap-learn >=0.3.10
.github/workflows/tests.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
  • codecov/codecov-action v1 composite