pyprophet

PyProphet: Semi-supervised learning and scoring of OpenSWATH results.

https://github.com/pyprophet/pyprophet

Science Score: 49.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 16 DOI reference(s) in README
  • Academic publication links
  • Committers with academic emails
    7 of 20 committers (35.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.1%) to scientific vocabulary

Keywords

data-independent-acquisition mass-spectrometry openswath proteomics python semi-supervised-learning swath-ms

Keywords from Contributors

3-clause-bsd analyses metabolomics ms-data openms
Last synced: 6 months ago · JSON representation

Repository

PyProphet: Semi-supervised learning and scoring of OpenSWATH results.

Basic Info
  • Host: GitHub
  • Owner: PyProphet
  • License: bsd-3-clause
  • Language: Python
  • Default Branch: master
  • Homepage: http://www.openswath.org
  • Size: 57.5 MB
Statistics
  • Stars: 29
  • Watchers: 3
  • Forks: 21
  • Open Issues: 12
  • Releases: 30
Topics
data-independent-acquisition mass-spectrometry openswath proteomics python semi-supervised-learning swath-ms
Created over 9 years ago · Last pushed 6 months ago
Metadata Files
Readme License

README.md

PyProphet

continuous-integration Project Stats PyPI - Python Version PyPI - Version Docker Image Version Read the Docs (version)

PyProphet: Semi-supervised learning and scoring of OpenSWATH results.

PyProphet is a Python re-implementation of the mProphet algorithm [1] optimized for SWATH-MS data acquired by data-independent acquisition (DIA). The algorithm was originally published in [2] and has since been extended to support new data types and analysis modes [3,4].

Please consult the OpenSWATH website for usage instructions and help.

Installation

We strongly advice to install PyProphet in a Python virtualenv. PyProphet is compatible with Python 3.

Install the development version of pyprophet from GitHub:

$ pip install git+https://github.com/PyProphet/pyprophet.git@master

Install the stable version of pyprophet from the Python Package Index (PyPI):

$ pip install pyprophet

Running pyprophet

pyprophet is not only a Python package, but also a command line tool:

$ pyprophet --help

or:

$ pyprophet score --in=tests/test_data.txt

Docker

PyProphet is also available from Docker (automated builds):

Pull the latest version of pyprophet from DockerHub or Github Container Registry (synced with releases):

```` # Dockerhub $ docker pull pyprophet/pyprophet:latest

# Github Container Registry
$ docker pull ghcr.io/pyprophet/pyprophet:latest

````

Documentation

API and CLI documentation is available on Read the Docs.

Running tests

The pyprophet tests are best executed using py.test and the pytest-regtest plugin:

$ pip install pytest $ pip install pytest-regtest $ py.test -n auto ./tests

References

  1. Reiter L, Rinner O, Picotti P, Hüttenhain R, Beck M, Brusniak MY, Hengartner MO, Aebersold R. mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat Methods. 2011 May;8(5):430-5. doi: 10.1038/nmeth.1584. Epub 2011 Mar 20.

  2. Teleman J, Röst HL, Rosenberger G, Schmitt U, Malmström L, Malmström J, Levander F. DIANA--algorithmic improvements for analysis of data-independent acquisition MS data. Bioinformatics. 2015 Feb 15;31(4):555-62. doi: 10.1093/bioinformatics/btu686. Epub 2014 Oct 27.

  3. Rosenberger G, Liu Y, Röst HL, Ludwig C, Buil A, Bensimon A, Soste M, Spector TD, Dermitzakis ET, Collins BC, Malmström L, Aebersold R. Inference and quantification of peptidoforms in large sample cohorts by SWATH-MS. Nat Biotechnol 2017 Aug;35(8):781-788. doi: 10.1038/nbt.3908. Epub 2017 Jun 12.

  4. Rosenberger G, Bludau I, Schmitt U, Heusel M, Hunter CL, Liu Y, MacCoss MJ, MacLean BX, Nesvizhskii AI, Pedrioli PGA, Reiter L, Röst HL, Tate S, Ting YS, Collins BC, Aebersold R. Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses. Nat Methods. 2017 Sep;14(9):921-927. doi: 10.1038/nmeth.4398. Epub 2017 Aug 21.

Owner

  • Name: PyProphet
  • Login: PyProphet
  • Kind: organization

GitHub Events

Total
  • Create event: 11
  • Issues event: 5
  • Release event: 9
  • Watch event: 1
  • Delete event: 6
  • Issue comment event: 21
  • Push event: 34
  • Pull request review comment event: 34
  • Pull request review event: 41
  • Pull request event: 35
Last Year
  • Create event: 11
  • Issues event: 5
  • Release event: 9
  • Watch event: 1
  • Delete event: 6
  • Issue comment event: 21
  • Push event: 34
  • Pull request review comment event: 34
  • Pull request review event: 41
  • Pull request event: 35

Committers

Last synced: over 2 years ago

All Time
  • Total Commits: 507
  • Total Committers: 20
  • Avg Commits per committer: 25.35
  • Development Distribution Score (DDS): 0.604
Past Year
  • Commits: 44
  • Committers: 4
  • Avg Commits per committer: 11.0
  • Development Distribution Score (DDS): 0.25
Top Committers
Name Email Commits
George Rosenberger g****8@c****u 201
Uwe Schmitt u****t@i****h 93
Uwe Schmitt u****t@m****e 74
singjc j****g@g****m 57
George Rosenberger g****r@u****h 15
Hannes Roest r****t@i****h 13
oliveralka r****9@g****t 12
George Rosenberger r****r@i****h 11
Johan Teleman j****n@i****e 7
Hannes Roest h****t@s****u 6
guoci z****i@g****m 4
Hannes Roest h****t@u****a 4
fickludd j****n@g****m 2
Uwe Schmitt u****t@s****) 2
Hannes Roest h****t@g****h 1
Rohan Shah r****h@c****u 1
Daniel Hyduke d****e@s****m 1
George Rosenberger g****r@n****l 1
Joshua Charkow 4****w 1
Justin Sing 3****c 1

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 42
  • Total pull requests: 105
  • Average time to close issues: about 1 year
  • Average time to close pull requests: about 2 months
  • Total issue authors: 32
  • Total pull request authors: 7
  • Average comments per issue: 3.26
  • Average comments per pull request: 0.53
  • Merged pull requests: 87
  • Bot issues: 0
  • Bot pull requests: 5
Past Year
  • Issues: 4
  • Pull requests: 37
  • Average time to close issues: N/A
  • Average time to close pull requests: 16 days
  • Issue authors: 2
  • Pull request authors: 3
  • Average comments per issue: 1.0
  • Average comments per pull request: 0.32
  • Merged pull requests: 26
  • Bot issues: 0
  • Bot pull requests: 5
Top Authors
Issue Authors
  • hroest (4)
  • jcharkow (3)
  • singjc (2)
  • fangfeiz (2)
  • bretttully (2)
  • oliveralka (2)
  • mantouRobot (2)
  • dpryan79 (1)
  • HFan11 (1)
  • Allen188 (1)
  • Hitlikegh (1)
  • tachengxmu (1)
  • Matthias313 (1)
  • summerghw (1)
  • shubham1637 (1)
Pull Request Authors
  • singjc (40)
  • grosenberger (39)
  • jcharkow (19)
  • dependabot[bot] (5)
  • oliveralka (5)
  • hroest (4)
  • rohan-shah (1)
Top Labels
Issue Labels
refactor (1)
Pull Request Labels
dependencies (5) python (5) refactor (1)

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 254 last-month
  • Total docker downloads: 35
  • Total dependent packages: 2
  • Total dependent repositories: 4
  • Total versions: 84
  • Total maintainers: 2
pypi.org: pyprophet

PyProphet: Semi-supervised learning and scoring of OpenSWATH results.

  • Versions: 84
  • Dependent Packages: 2
  • Dependent Repositories: 4
  • Downloads: 254 Last month
  • Docker Downloads: 35
Rankings
Docker downloads count: 1.6%
Dependent packages count: 3.1%
Average: 7.3%
Dependent repos count: 7.5%
Forks count: 8.2%
Downloads: 11.1%
Stargazers count: 12.2%
Maintainers (2)
Last synced: 6 months ago

Dependencies

setup.py pypi
  • Click *
  • cython *
  • hyperopt *
  • matplotlib *
  • numexpr *
  • numpy *
  • pandas *
  • scikit-learn *
  • scipy *
  • statsmodels *
  • tabulate *
  • xgboost *
.github/workflows/dockerpublish.yml actions
  • actions/checkout v3 composite
  • docker/build-push-action ad44023a93711e3deb337508980b4b5e9bcdc5dc composite
  • docker/login-action f054a8b539a109f9f41c372932f1ae047eff08c9 composite
  • docker/metadata-action 98669ae865ea3cffbcbaa878cf57c20bbf1c6c38 composite
.github/workflows/pythonpublish.yml actions
  • actions/checkout v1 composite
  • actions/setup-python v1 composite
Dockerfile docker
  • python 3.9.1 build
.github/workflows/ci.yml actions
  • actions/checkout v4 composite
  • actions/setup-python v5 composite
.github/workflows/dependabot.yml actions
pyproject.toml pypi
  • Click *
  • cython *
  • duckdb *
  • duckdb-extension-sqlite-scanner *
  • duckdb-extensions *
  • hyperopt *
  • matplotlib *
  • numexpr >= 2.10.1
  • numpy >= 1.26.4
  • pandas >= 2.0
  • polars >= 1.28.1
  • pyarrow *
  • pypdf *
  • scikit-learn >= 1.5
  • scipy *
  • statsmodels >= 0.8.0
  • tabulate *
  • xgboost *
requirements.txt pypi
  • click ==8.1.7
  • cloudpickle ==3.1.0
  • contourpy ==1.3.0
  • cycler ==0.12.1
  • cython ==3.0.11
  • duckdb ==1.1.3
  • duckdb-extension-sqlite-scanner ==1.1.3
  • duckdb-extensions ==1.1.3
  • exceptiongroup ==1.2.2
  • fonttools ==4.55.0
  • future ==1.0.0
  • hyperopt ==0.2.7
  • importlib-resources ==6.5.2
  • iniconfig ==2.0.0
  • joblib ==1.4.2
  • kiwisolver ==1.4.7
  • matplotlib ==3.9.2
  • networkx ==3.2.1
  • numexpr ==2.10.1
  • numpy ==2.0.2
  • nvidia-nccl-cu12 ==2.23.4
  • packaging ==24.2
  • pandas ==2.2.3
  • patsy ==1.0.1
  • pillow ==11.0.0
  • pluggy ==1.5.0
  • polars ==1.28.1
  • py4j ==0.10.9.7
  • pyarrow ==18.0.0
  • pyparsing ==3.2.0
  • pypdf ==5.1.0
  • pytest ==8.3.3
  • pytest-regtest ==2.3.3
  • python-dateutil ==2.9.0.post0
  • pytz ==2024.2
  • scikit-learn ==1.5.2
  • scipy ==1.13.1
  • six ==1.16.0
  • statsmodels ==0.14.4
  • tabulate ==0.9.0
  • threadpoolctl ==3.5.0
  • tomli ==2.2.1
  • tqdm ==4.67.0
  • typing-extensions ==4.13.2
  • tzdata ==2024.2
  • xgboost ==2.1.2
  • zipp ==3.21.0