Science Score: 23.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
○DOI references
-
✓Academic publication links
Links to: zenodo.org -
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (13.9%) to scientific vocabulary
Keywords
data-analysis
material-science
morphological-analysis
volumetric-data
Last synced: 6 months ago
·
JSON representation
Repository
Quanfima (Quantitative Analysis of Fibrous Materials)
Basic Info
- Host: GitHub
- Owner: rshkarin
- License: mit
- Language: Python
- Default Branch: master
- Homepage: http://quanfima.readthedocs.io
- Size: 4.55 MB
Statistics
- Stars: 29
- Watchers: 2
- Forks: 17
- Open Issues: 6
- Releases: 1
Topics
data-analysis
material-science
morphological-analysis
volumetric-data
Created almost 8 years ago
· Last pushed about 2 years ago
Metadata Files
Readme
License
README.rst
.. image:: docs/source/_static/logo.png
:align: left
-----------
.. image:: https://travis-ci.org/rshkarin/quanfima.svg?branch=master
:target: https://travis-ci.org/rshkarin/quanfima
.. image:: https://readthedocs.org/projects/quanfima/badge/?version=latest
:target: http://quanfima.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://zenodo.org/badge/127795855.svg
:target: https://zenodo.org/badge/latestdoi/127795855
*Quanfima* (**qu**\ antitative **an**\ alysis of **fi**\ brous **ma**\ terials)
is a collection of useful functions for morphological analysis and visualization
of 2D/3D data from various areas of material science. The aim is to simplify
the analysis process by providing functionality for frequently required tasks
in the same place.
More examples of usage you can find in the documentation.
- Analysis of fibrous structures by tensor-based method in 2D / 3D datasets.
- Estimation of structure diameters in 2D / 3D by a ray-casting method.
- Counting of particles in 2D / 3D datasets and providing a detailed report in
pandas.DataFrame format.
- Calculation of porosity measure for each material in 2D / 3D datasets.
- Visualization in 2D / 3D using matplotlib, visvis packages.
Installation
------------
The easiest way to install the latest version is by using pip::
$ pip install quanfima
You may also use Git to clone the repository and install it manually::
$ git clone https://github.com/rshkarin/quanfima.git
$ cd quanfima
$ python setup.py install
Usage
-----
Open a grayscale image, perform segmentation, estimate porosity, analyze fiber
orientation and diameters, and plot the results.
.. code-block:: python
import numpy as np
from skimage import io, filters
from quanfima import morphology as mrph
from quanfima import visualization as vis
from quanfima import utils
img = io.imread('../data/polymer_slice.tif')
th_val = filters.threshold_otsu(img)
img_seg = (img > th_val).astype(np.uint8)
# estimate porosity
pr = mrph.calc_porosity(img_seg)
for k,v in pr.items():
print 'Porosity ({}): {}'.format(k, v)
# prepare data and analyze fibers
data, skeleton, skeleton_thick = utils.prepare_data(img_seg)
cskel, fskel, omap, dmap, ovals, dvals = \
mrph.estimate_fiber_properties(data, skeleton)
# plot results
vis.plot_orientation_map(omap, fskel, min_label=u'0°', max_label=u'180°',
figsize=(10,10),
name='2d_polymer',
output_dir='/path/to/output/dir')
vis.plot_diameter_map(dmap, cskel, figsize=(10,10), cmap='gist_rainbow',
name='2d_polymer',
output_dir='/path/to/output/dir')
.. code-block:: python
>> Porosity (Material 1): 0.845488888889
.. image:: docs/source/_static/2d_polymer_data.png
:align: center
.. image:: docs/source/_static/2d_polymer_orientation_map_600px.png
:align: center
.. image:: docs/source/_static/2d_polymer_diameter_map_600px.png
:align: center
Owner
- Name: Roman Shkarin
- Login: rshkarin
- Kind: user
- Location: Berlin
- Company: ML Engineer @ Remerge
- Repositories: 30
- Profile: https://github.com/rshkarin
Distributed systems, Machine Learning, Go, Python, Neovim
GitHub Events
Total
- Fork event: 1
Last Year
- Fork event: 1
Committers
Last synced: over 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| Roman Shkarin | m****9@g****m | 21 |
| Vanshika Gupta | v****1@g****m | 3 |
| Roman Shkarin | r****n@g****m | 2 |
| Nicholas Won | d****7@g****m | 1 |
Issues and Pull Requests
Last synced: over 1 year ago
All Time
- Total issues: 6
- Total pull requests: 4
- Average time to close issues: 2 months
- Average time to close pull requests: 3 months
- Total issue authors: 6
- Total pull request authors: 4
- Average comments per issue: 2.17
- Average comments per pull request: 0.25
- Merged pull requests: 2
- Bot issues: 0
- Bot pull requests: 1
Past Year
- Issues: 0
- Pull requests: 1
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 1
- Average comments per issue: 0
- Average comments per pull request: 0.0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- javad-rahmannezhad (1)
- SantiagoQuinteros (1)
- vansjyo (1)
- CMollier (1)
- Akhsoul (1)
- robintwhite (1)
Pull Request Authors
- vansjyo (1)
- dependabot[bot] (1)
- NicholasWon47 (1)
- rshkarin (1)
Top Labels
Issue Labels
Pull Request Labels
dependencies (1)
Packages
- Total packages: 1
-
Total downloads:
- pypi 11 last-month
- Total dependent packages: 0
- Total dependent repositories: 1
- Total versions: 3
- Total maintainers: 1
pypi.org: quanfima
The package for morphological analysis and visualization of fibrous materials.
- Homepage: http://github.com/rshkarin/quanfima
- Documentation: https://quanfima.readthedocs.io/
- License: MIT
-
Latest release: 0.1a3
published almost 8 years ago
Rankings
Forks count: 8.9%
Dependent packages count: 10.0%
Stargazers count: 12.4%
Average: 17.5%
Dependent repos count: 21.7%
Downloads: 34.6%
Maintainers (1)
Last synced:
6 months ago
Dependencies
requirements.txt
pypi
- matplotlib ==2.0.2
- nose ==1.3.7
- numpy ==1.13.3
- pandas ==0.19.2
- scikit-image ==0.12.3
- scikit-learn ==0.18.1
- scipy ==0.19.0
setup.py
pypi
- imageio >=2.3.0
- matplotlib ==2.0.2
- numpy >=1.13.3
- pandas >=0.19.2
- scikit-image >=0.12.3
- scikit-learn >=0.18.1
- scipy >=0.19.0