textdistance

πŸ“ Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage.

https://github.com/life4/textdistance

Science Score: 36.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • β—‹
    CITATION.cff file
  • βœ“
    codemeta.json file
    Found codemeta.json file
  • βœ“
    .zenodo.json file
    Found .zenodo.json file
  • β—‹
    DOI references
  • βœ“
    Academic publication links
    Links to: academia.edu
  • β—‹
    Committers with academic emails
  • β—‹
    Institutional organization owner
  • β—‹
    JOSS paper metadata
  • β—‹
    Scientific vocabulary similarity
    Low similarity (7.3%) to scientific vocabulary

Keywords

algorithm algorithms damerau-levenshtein damerau-levenshtein-distance diff distance distance-calculation hamming-distance jellyfish levenshtein levenshtein-distance python textdistance

Keywords from Contributors

closember bioinformatics alignment flexible fuzzing
Last synced: 6 months ago · JSON representation

Repository

πŸ“ Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage.

Basic Info
  • Host: GitHub
  • Owner: life4
  • License: mit
  • Language: Python
  • Default Branch: master
  • Homepage:
  • Size: 452 KB
Statistics
  • Stars: 3,467
  • Watchers: 64
  • Forks: 255
  • Open Issues: 9
  • Releases: 13
Topics
algorithm algorithms damerau-levenshtein damerau-levenshtein-distance diff distance distance-calculation hamming-distance jellyfish levenshtein levenshtein-distance python textdistance
Created almost 9 years ago · Last pushed 10 months ago
Metadata Files
Readme License

README.md

TextDistance

TextDistance logo

Build Status PyPI version Status License

TextDistance -- python library for comparing distance between two or more sequences by many algorithms.

Features:

  • 30+ algorithms
  • Pure python implementation
  • Simple usage
  • More than two sequences comparing
  • Some algorithms have more than one implementation in one class.
  • Optional numpy usage for maximum speed.

Algorithms

Edit based

| Algorithm | Class | Functions | |-------------------------------------------------------------------------------------------|----------------------|------------------------| | Hamming | Hamming | hamming | | MLIPNS | MLIPNS | mlipns | | Levenshtein | Levenshtein | levenshtein | | Damerau-Levenshtein | DamerauLevenshtein | damerau_levenshtein | | Jaro-Winkler | JaroWinkler | jaro_winkler, jaro | | Strcmp95 | StrCmp95 | strcmp95 | | Needleman-Wunsch | NeedlemanWunsch | needleman_wunsch | | Gotoh | Gotoh | gotoh | | Smith-Waterman | SmithWaterman | smith_waterman |

Token based

| Algorithm | Class | Functions | |-------------------------------------------------------------------------------------------|----------------------|---------------| | Jaccard index | Jaccard | jaccard | | SΓΈrensen–Dice coefficient | Sorensen | sorensen, sorensen_dice, dice | | Tversky index | Tversky | tversky | | Overlap coefficient | Overlap | overlap | | Tanimoto distance | Tanimoto | tanimoto | | Cosine similarity | Cosine | cosine | | Monge-Elkan | MongeElkan | monge_elkan | | Bag distance | Bag | bag |

Sequence based

| Algorithm | Class | Functions | |-----------|-------|-----------| | longest common subsequence similarity | LCSSeq | lcsseq | | longest common substring similarity | LCSStr | lcsstr | | Ratcliff-Obershelp similarity | RatcliffObershelp | ratcliff_obershelp |

Compression based

Normalized compression distance with different compression algorithms.

Classic compression algorithms:

| Algorithm | Class | Function | |----------------------------------------------------------------------------|-------------|--------------| | Arithmetic coding | ArithNCD | arith_ncd | | RLE | RLENCD | rle_ncd | | BWT RLE | BWTRLENCD | bwtrle_ncd |

Normal compression algorithms:

| Algorithm | Class | Function | |----------------------------------------------------------------------------|--------------|---------------| | Square Root | SqrtNCD | sqrt_ncd | | Entropy | EntropyNCD | entropy_ncd |

Work in progress algorithms that compare two strings as array of bits:

| Algorithm | Class | Function | |--------------------------------------------|-----------|------------| | BZ2 | BZ2NCD | bz2_ncd | | LZMA | LZMANCD | lzma_ncd | | ZLib | ZLIBNCD | zlib_ncd |

See blog post for more details about NCD.

Phonetic

| Algorithm | Class | Functions | |------------------------------------------------------------------------------|----------|-----------| | MRA | MRA | mra | | Editex | Editex | editex |

Simple

| Algorithm | Class | Functions | |---------------------|------------|------------| | Prefix similarity | Prefix | prefix | | Postfix similarity | Postfix | postfix | | Length distance | Length | length | | Identity similarity | Identity | identity | | Matrix similarity | Matrix | matrix |

Installation

Stable

Only pure python implementation:

bash pip install textdistance

With extra libraries for maximum speed:

bash pip install "textdistance[extras]"

With all libraries (required for benchmarking and testing):

bash pip install "textdistance[benchmark]"

With algorithm specific extras:

bash pip install "textdistance[Hamming]"

Algorithms with available extras: DamerauLevenshtein, Hamming, Jaro, JaroWinkler, Levenshtein.

Dev

Via pip:

bash pip install -e git+https://github.com/life4/textdistance.git#egg=textdistance

Or clone repo and install with some extras:

bash git clone https://github.com/life4/textdistance.git pip install -e ".[benchmark]"

Usage

All algorithms have 2 interfaces:

  1. Class with algorithm-specific params for customizing.
  2. Class instance with default params for quick and simple usage.

All algorithms have some common methods:

  1. .distance(*sequences) -- calculate distance between sequences.
  2. .similarity(*sequences) -- calculate similarity for sequences.
  3. .maximum(*sequences) -- maximum possible value for distance and similarity. For any sequence: distance + similarity == maximum.
  4. .normalized_distance(*sequences) -- normalized distance between sequences. The return value is a float between 0 and 1, where 0 means equal, and 1 totally different.
  5. .normalized_similarity(*sequences) -- normalized similarity for sequences. The return value is a float between 0 and 1, where 0 means totally different, and 1 equal.

Most common init arguments:

  1. qval -- q-value for split sequences into q-grams. Possible values:
    • 1 (default) -- compare sequences by chars.
    • 2 or more -- transform sequences to q-grams.
    • None -- split sequences by words.
  2. as_set -- for token-based algorithms:
    • True -- t and ttt is equal.
    • False (default) -- t and ttt is different.

Examples

For example, Hamming distance:

```python import textdistance

textdistance.hamming('test', 'text')

1

textdistance.hamming.distance('test', 'text')

1

textdistance.hamming.similarity('test', 'text')

3

textdistance.hamming.normalized_distance('test', 'text')

0.25

textdistance.hamming.normalized_similarity('test', 'text')

0.75

textdistance.Hamming(qval=2).distance('test', 'text')

2

```

Any other algorithms have same interface.

Articles

A few articles with examples how to use textdistance in the real world:

Extra libraries

For main algorithms textdistance try to call known external libraries (fastest first) if available (installed in your system) and possible (this implementation can compare this type of sequences). Install textdistance with extras for this feature.

You can disable this by passing external=False argument on init:

```python3 import textdistance hamming = textdistance.Hamming(external=False) hamming('text', 'testit')

3

```

Supported libraries:

  1. jellyfish
  2. py_stringmatching
  3. pylev
  4. Levenshtein
  5. pyxDamerauLevenshtein

Algorithms:

  1. DamerauLevenshtein
  2. Hamming
  3. Jaro
  4. JaroWinkler
  5. Levenshtein

Benchmarks

Without extras installation:

| algorithm | library | time | |--------------------|-----------------------|---------| | DamerauLevenshtein | rapidfuzz | 0.00312 | | DamerauLevenshtein | jellyfish | 0.00591 | | DamerauLevenshtein | pyxdameraulevenshtein | 0.03335 | | DamerauLevenshtein | textdistance | 0.83524 | | Hamming | Levenshtein | 0.00038 | | Hamming | rapidfuzz | 0.00044 | | Hamming | jellyfish | 0.00091 | | Hamming | textdistance | 0.03531 | | Jaro | rapidfuzz | 0.00092 | | Jaro | jellyfish | 0.00191 | | Jaro | textdistance | 0.07365 | | JaroWinkler | rapidfuzz | 0.00094 | | JaroWinkler | jellyfish | 0.00195 | | JaroWinkler | textdistance | 0.07501 | | Levenshtein | rapidfuzz | 0.00099 | | Levenshtein | Levenshtein | 0.00122 | | Levenshtein | jellyfish | 0.00254 | | Levenshtein | pylev | 0.15688 | | Levenshtein | textdistance | 0.53902 |

Total: 24 libs.

Yeah, so slow. Use TextDistance on production only with extras.

Textdistance use benchmark's results for algorithm's optimization and try to call fastest external lib first (if possible).

You can run benchmark manually on your system:

bash pip install textdistance[benchmark] python3 -m textdistance.benchmark

TextDistance show benchmarks results table for your system and save libraries priorities into libraries.json file in TextDistance's folder. This file will be used by textdistance for calling fastest algorithm implementation. Default libraries.json already included in package.

Running tests

All you need is task. See Taskfile.yml for the list of available commands. For example, to run tests including third-party libraries usage, execute task pytest-external:run.

Contributing

PRs are welcome!

  • Found a bug? Fix it!
  • Want to add more algorithms? Sure! Just make it with the same interface as other algorithms in the lib and add some tests.
  • Can make something faster? Great! Just avoid external dependencies and remember that everything should work not only with strings.
  • Something else that do you think is good? Do it! Just make sure that CI passes and everything from the README is still applicable (interface, features, and so on).
  • Have no time to code? Tell your friends and subscribers about textdistance. More users, more contributions, more amazing features.

Thank you :heart:

Owner

  • Name: Life4
  • Login: life4
  • Kind: organization

Big and cool projects by @orsinium. See also @orsinium-labs.

GitHub Events

Total
  • Watch event: 115
  • Issue comment event: 1
  • Pull request event: 2
  • Fork event: 6
Last Year
  • Watch event: 115
  • Issue comment event: 1
  • Pull request event: 2
  • Fork event: 6

Committers

Last synced: 9 months ago

All Time
  • Total Commits: 348
  • Total Committers: 18
  • Avg Commits per committer: 19.333
  • Development Distribution Score (DDS): 0.106
Past Year
  • Commits: 7
  • Committers: 5
  • Avg Commits per committer: 1.4
  • Development Distribution Score (DDS): 0.571
Top Committers
Name Email Commits
Gram m****s@m****u 311
Julian Gilbey j****t@d****t 7
Benjamin A. Beasley c****e@m****t 4
Julian Gilbey j****g@d****g 3
Bruno Pagani b****i@g****m 3
Eliad Levy 1****l 3
McKenna d****m@a****t 3
Max Bachmann k****t@m****e 2
davebulaval d****5@u****a 2
Inokenty i****5@g****m 2
Bruno P. Kinoshita k****w 1
Christian Eriksson c****n@l****e 1
ChristofKaufmann c****v@g****m 1
Fabian Winkler w****y 1
KKGBiz k****s@g****m 1
Jungyeol Lee j****l@s****m 1
Andrea C****1 1
Reindert Van Herreweghe 3****e 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 9 months ago

All Time
  • Total issues: 0
  • Total pull requests: 57
  • Average time to close issues: N/A
  • Average time to close pull requests: 15 days
  • Total issue authors: 0
  • Total pull request authors: 19
  • Average comments per issue: 0
  • Average comments per pull request: 1.19
  • Merged pull requests: 54
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 4
  • Average time to close issues: N/A
  • Average time to close pull requests: about 8 hours
  • Issue authors: 0
  • Pull request authors: 4
  • Average comments per issue: 0
  • Average comments per pull request: 1.0
  • Merged pull requests: 4
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
  • orsinium (27)
  • juliangilbey (8)
  • musicinmybrain (3)
  • KKGBiz (2)
  • maxbachmann (2)
  • ArchangeGabriel (2)
  • Inokenty90 (2)
  • christian-eriksson (2)
  • davebulaval (2)
  • ennamarie19 (2)
  • ChristofKaufmann (2)
  • kinow (1)
  • eliadl (1)
  • wynksaiddestroy (1)
  • Reindert94 (1)
Top Labels
Issue Labels
Pull Request Labels
hacktoberfest-accepted (1)

Packages

  • Total packages: 1
  • Total downloads: unknown
  • Total dependent packages: 0
  • Total dependent repositories: 0
  • Total versions: 1
proxy.golang.org: github.com/life4/textdistance
  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Stargazers count: 1.2%
Forks count: 1.8%
Average: 5.8%
Dependent packages count: 9.6%
Dependent repos count: 10.8%
Last synced: 7 months ago

Dependencies

.github/workflows/main.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
  • arduino/setup-task v1 composite
  • nosborn/github-action-markdown-cli v3.2.0 composite
licenses_example/requirements.txt pypi
  • pandas *
  • plotnine *
  • textdistance *
pyproject.toml pypi
setup.py pypi