Science Score: 67.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 1 DOI reference(s) in README -
✓Academic publication links
Links to: arxiv.org, researchgate.net, springer.com -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.7%) to scientific vocabulary
Keywords
baum-welch
hidden-markov-model
machine-learning
markov-chain
markov-decision-processes
markov-model
model-checking
python
storm
Last synced: 6 months ago
·
JSON representation
·
Repository
Baum-Welch for all kind of Markov models
Basic Info
Statistics
- Stars: 21
- Watchers: 1
- Forks: 2
- Open Issues: 0
- Releases: 19
Topics
baum-welch
hidden-markov-model
machine-learning
markov-chain
markov-decision-processes
markov-model
model-checking
python
storm
Created over 3 years ago
· Last pushed almost 2 years ago
Metadata Files
Readme
License
Citation
README.md
[](https://pypi.org/project/jajapy/) [](https://www.python.org/downloads/release/python-360/)  [](https://en.wikipedia.org/wiki/MIT_License)
Introduction
jajapy is a python library implementing the Baum-Welch algorithm on various kinds of Markov models.
jajapy generates models which are compatible with the Stormpy model checker. Thus, jajapycan be use as a learning extension to the Storm model checker.
Main features
jajapy provides:
| Markov Model | Learning Algorithm(s) |
|-------|:-------------:|
| MC | Baum-Welch for MCs
Alergia ([ref](https://www.researchgate.net/publication/2543721_Learning_Stochastic_Regular_Grammars_by_Means_of_a_State_Merging_Method/stats)) | | MDP | Baum-Welch for MDPs ([ref](https://arxiv.org/abs/2110.03014))
Active Baum-Welch ([ref](https://arxiv.org/abs/2110.03014))
IOAlergia ([ref](https://link.springer.com/content/pdf/10.1007/s10994-016-5565-9.pdf))| | CTMC | Baum-Welch for CTMCs
Baum-Welch for synchronous compositions of CTMCs| | PCTMC | Baum-Welch for PCTMCs ([ref](https://arxiv.org/abs/2302.08588))| | HMM | Baum-Welch for HMMs ([ref](https://web.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial%20on%20hmm%20and%20applications.pdf)) | | GoHMM | Baum-Welch for GoHMMs ([ref](http://www.inass.org/2020/2020022920.pdf)) |
Alergia ([ref](https://www.researchgate.net/publication/2543721_Learning_Stochastic_Regular_Grammars_by_Means_of_a_State_Merging_Method/stats)) | | MDP | Baum-Welch for MDPs ([ref](https://arxiv.org/abs/2110.03014))
Active Baum-Welch ([ref](https://arxiv.org/abs/2110.03014))
IOAlergia ([ref](https://link.springer.com/content/pdf/10.1007/s10994-016-5565-9.pdf))| | CTMC | Baum-Welch for CTMCs
Baum-Welch for synchronous compositions of CTMCs| | PCTMC | Baum-Welch for PCTMCs ([ref](https://arxiv.org/abs/2302.08588))| | HMM | Baum-Welch for HMMs ([ref](https://web.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial%20on%20hmm%20and%20applications.pdf)) | | GoHMM | Baum-Welch for GoHMMs ([ref](http://www.inass.org/2020/2020022920.pdf)) |
jajapy is compatible with Prism and Storm.
Installation
pip install jajapy
Requirements
- numpy
- scipy
- alive-progress
- sympy
- stormpy (recommended: if stormpy is not installed,
jajapywill generate models in jajapy format).
Documentation
Available on readthedoc
Reference and citation
- The extended version of the tool paper presented at QEST'23 is available here
- If you use this tool in your research, please cite it
About the author
Owner
- Name: Raphaël
- Login: Rapfff
- Kind: user
- Location: Iceland
- Company: Reykjavík University
- Repositories: 9
- Profile: https://github.com/Rapfff
PhD student at Reykjavik University
Citation (CITATION.cff)
cff-version: 1.2.0 message: "If you use this software, please cite it as below." authors: - family-names: "Reynouard" given-names: "Raphaël" title: "jajapy" version: 0.10 date-released: 2023-03-01 url: "https://github.com/Rapfff/jajapy" license: MIT
GitHub Events
Total
- Watch event: 3
Last Year
- Watch event: 3
Dependencies
requirements.txt
pypi
- numpy *
- scipy *
setup.py
pypi
- numpy *
- scipy *