Science Score: 36.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
✓Committers with academic emails
3 of 8 committers (37.5%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (13.6%) to scientific vocabulary
Keywords
cci
climers
esa
preprocess
python
read
sm
soil-moisture
Keywords from Contributors
projection
interactive
serializer
cycles
packaging
charts
network-simulation
archival
shellcodes
hacking
Last synced: 6 months ago
·
JSON representation
Repository
Conversion of ESA CCI SM images into time series
Basic Info
- Host: GitHub
- Owner: TUW-GEO
- License: mit
- Language: Python
- Default Branch: master
- Homepage: https://www.esa-soilmoisture-cci.org/
- Size: 4.66 MB
Statistics
- Stars: 17
- Watchers: 3
- Forks: 11
- Open Issues: 2
- Releases: 6
Topics
cci
climers
esa
preprocess
python
read
sm
soil-moisture
Created over 7 years ago
· Last pushed over 1 year ago
Metadata Files
Readme
Changelog
License
Authors
README.rst
============
esa_cci_sm
============
|ci| |cov| |pip| |doc|
.. |ci| image:: https://github.com/TUW-GEO/esa_cci_sm/actions/workflows/ci.yml/badge.svg?branch=master
:target: https://github.com/TUW-GEO/esa_cci_sm/actions
.. |cov| image:: https://coveralls.io/repos/TUW-GEO/esa_cci_sm/badge.png?branch=master
:target: https://coveralls.io/r/TUW-GEO/esa_cci_sm?branch=master
.. |pip| image:: https://badge.fury.io/py/esa_cci_sm.svg
:target: http://badge.fury.io/py/esa_cci_sm
.. |doc| image:: https://readthedocs.org/projects/esa_cci_sm/badge/?version=latest
:target: http://esa-cci-sm.readthedocs.org/
Tools to convert `ESA CCI SM `_ image files into a time series format.
Installation
------------
This python package and all required dependencies can be installed from
`pypi `_
via `pip `_
.. code-block:: shell
pip install esa_cci_sm
On macOS if you get ``ImportError: Pykdtree failed to import its C extension``,
then it might be necessary to install the `pykdtree` package from conda-forge
.. code-block:: shell
conda install -c conda-forge pykdtree
Data download
-------------
Download ESA CCI SM data files either from the public
`CEDA data store via https `_
or the CEDA FTP server using, e.g. `FileZilla `_
or `wget `_
**Host (FTP)**: ``anon-ftp.ceda.ac.uk`` no password or user required
**Directory (FTP)**: ``/neodc/esacci/soil_moisture``)
E.g the following command will download v9.1 COMBINED data for the year 2023 from the CEDA FTP via wget
.. code-block:: shell
wget -np -nH --cut-dirs 7 -r ftp://anon-ftp.ceda.ac.uk/neodc/esacci/soil_moisture/data/daily_files/COMBINED/v09.1/2023/
Time series creation
--------------------
After installing this package via pip, you have access to the command line tool to convert ESA CCI SM image files
to CF conform time series. We use an Orthogonal multidimensional array representation
as implemented in the `pynetCF `_ python library.
Note that we assume that the downloaded images are stored in yearly subfolders
like
.. code-block::
/tmp/img/
├── 1978/
│ ├── ESACCI-SOILMOISTURE-L3S-SSMV-PASSIVE-19781101000000-fv09.1.nc
│ ├── ESACCI-SOILMOISTURE-L3S-SSMV-PASSIVE-19781102000000-fv09.1.nc
│ ├── ...
...
├── 2023/
│ ├── ...
│ ├── ESACCI-SOILMOISTURE-L3S-SSMV-PASSIVE-20231231000000-fv09.1.nc
The following command would then take the daily images from 1991
to 2023 in the path ``/tmp/img`` and convert data for grid cells over land into times series.
Time series are then stored in ``/tmp/ts``.
.. code-block:: shell
ccism_reshuffle /tmp/img /tmp/ts 1991-01-01 2023-12-31 --land_points True
Afterwards, in python, the data can be read as pandas DataFrames.
.. code-block:: python
>> from esa_cci_sm.interface import CCITs
>> ds = CCITs("/tmp/ts", ioclass_kws={'read_bulk': True})
>> ds.read(15, 45) # lon, lat
sm sm_uncertainty flag ... mode sensor t0
1991-01-01 0.424880 0.094507 0 ... 1 2 7670.175000
1991-01-02 NaN NaN 24 ... 2 2 NaN
1991-01-03 NaN NaN 8 ... 0 2 NaN
... ... ... ... ... ... ... ...
2023-12-29 0.495448 0.039983 0 ... 3 21536 19720.051575
2023-12-30 0.426107 0.055060 0 ... 3 16416 19721.147066
2023-12-31 0.390103 0.030294 0 ... 3 21600 19722.117129
Supported Products
==================
At the moment this package supports ESA CCI soil moisture data versions
3 to 9 in netCDF format (reading and time series creation)
with a spatial sampling of 0.25 degrees.
Contribute
==========
We are happy if you want to contribute. Please raise an issue explaining what
is missing or if you find a bug. We will also gladly accept pull requests
against our master branch for new features or bug fixes.
Setup
-----
Setup of a complete development environment with `conda
`_ can be performed using the following
commands:
.. code-block:: shell
git clone git@github.com:TUW-GEO/esa_cci_sm.git --recursive esa_cci_sm
cd ./esa_cci_sm
conda create -n esa_cci_sm python=3.12
conda activate esa_cci_sm
pip install -e .[testing]
To checkout our testdata files, you need to have
`Git LFS `_ installed on your machine.
Guidelines
----------
If you want to contribute please follow these steps:
- Fork the esa_cci_sm repository to your account
- Clone the repository, make sure you use ``git clone ... --recursive`` to also get
the test data repository.
- make a new feature branch from the esa_cci_sm master branch
- Add your feature
- Please include tests for your contributions in one of the test directories.
We use pytest so a simple function called test_my_feature is enough
- submit a pull request to our master branch
Owner
- Name: TU Wien - Department of Geodesy and Geoinformation
- Login: TUW-GEO
- Kind: organization
- Location: Vienna, Austria
- Website: http://geo.tuwien.ac.at
- Repositories: 53
- Profile: https://github.com/TUW-GEO
GitHub Events
Total
- Create event: 2
- Issues event: 1
- Release event: 1
- Watch event: 4
- Delete event: 1
- Issue comment event: 1
- Push event: 4
- Pull request event: 5
- Fork event: 1
Last Year
- Create event: 2
- Issues event: 1
- Release event: 1
- Watch event: 4
- Delete event: 1
- Issue comment event: 1
- Push event: 4
- Pull request event: 5
- Fork event: 1
Committers
Last synced: 7 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Wolfgang Preimesberger | w****r@g****t | 76 |
| Manuel Schmitzer | m****r@t****t | 45 |
| wpreimes | M****3 | 5 |
| c-hydro | 3****o | 3 |
| FabioDelogu | f****u@c****g | 1 |
| dependabot[bot] | 4****] | 1 |
| pbutting | 3****g | 1 |
| tscanlon | t****n@g****t | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 2
- Total pull requests: 25
- Average time to close issues: N/A
- Average time to close pull requests: about 11 hours
- Total issue authors: 2
- Total pull request authors: 3
- Average comments per issue: 0.0
- Average comments per pull request: 0.48
- Merged pull requests: 24
- Bot issues: 0
- Bot pull requests: 4
Past Year
- Issues: 1
- Pull requests: 3
- Average time to close issues: N/A
- Average time to close pull requests: 39 minutes
- Issue authors: 1
- Pull request authors: 2
- Average comments per issue: 0.0
- Average comments per pull request: 0.33
- Merged pull requests: 3
- Bot issues: 0
- Bot pull requests: 2
Top Authors
Issue Authors
- Adeaem (1)
- MauriceEric (1)
Pull Request Authors
- wpreimes (20)
- dependabot[bot] (4)
- pbutting (1)
Top Labels
Issue Labels
Pull Request Labels
dependencies (4)
github_actions (2)
Packages
- Total packages: 1
- Total downloads: unknown
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 5
proxy.golang.org: github.com/tuw-geo/esa_cci_sm
- Documentation: https://pkg.go.dev/github.com/tuw-geo/esa_cci_sm#section-documentation
- License: mit
-
Latest release: v0.5.0
published over 1 year ago
Rankings
Dependent packages count: 7.0%
Average: 8.2%
Dependent repos count: 9.3%
Last synced:
6 months ago
Dependencies
.github/workflows/ci.yml
actions
- actions/checkout v2 composite
- actions/download-artifact v2 composite
- actions/upload-artifact v2 composite
- conda-incubator/setup-miniconda v2 composite
- pypa/gh-action-pypi-publish v1.4.1 composite
environment.yml
conda
- netcdf4
- pandas
- pip
- pyresample
setup.py
pypi