Science Score: 67.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 6 DOI reference(s) in README
  • Academic publication links
    Links to: sciencedirect.com, joss.theoj.org
  • Committers with academic emails
    22 of 28 committers (78.6%) from academic institutions
  • Institutional organization owner
    Organization rwth-ebc has institutional domain (www.ebc.eonerc.rwth-aachen.de)
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (17.3%) to scientific vocabulary

Keywords

maintained tool

Keywords from Contributors

buildings urban-energy-modeling fiware fiware-iot-agents fiware-ngsi-v2 fiware-orion fiware-quantum-leap
Last synced: 6 months ago · JSON representation

Repository

Basic Info
  • Host: GitHub
  • Owner: RWTH-EBC
  • License: bsd-3-clause
  • Language: Python
  • Default Branch: master
  • Homepage:
  • Size: 55.6 MB
Statistics
  • Stars: 12
  • Watchers: 14
  • Forks: 2
  • Open Issues: 7
  • Releases: 20
Topics
maintained tool
Created over 4 years ago · Last pushed 6 months ago
Metadata Files
Readme Changelog License

README.md

E.ON EBC RWTH Aachen University

DOI pylint documentation coverage License build

ebcpy

This PYthon package provides generic functions and classes commonly used for the analysis and optimization of energy systems, buildings and indoor climate (EBC).

Key features are:

  • SimulationAPI's
  • Optimization wrapper
  • Useful loading of time series data and time series data accessor for DataFrames
  • Pre-/Postprocessing
  • Modelica utilities

It was developed together with AixCaliBuHA, a framework for an automated calibration of dynamic building and HVAC models. During this development, we found several interfaces relevant to further research. We thus decoupled these interfaces into ebcpy and used the framework, for instance in the design optimization of heat pump systems (link).

Installation

To install, simply run pip install ebcpy

In order to use all optional dependencies (e.g. pymoo optimization), install via:

pip install ebcpy[full]

If you encounter an error with the installation of scikit-learn, first install scikit-learn separatly and then install ebcpy:

pip install scikit-learn pip install ebcpy

If this still does not work, we refer to the troubleshooting section of scikit-learn: https://scikit-learn.org/stable/install.html#troubleshooting. Also check issue 23 for updates.

In order to help development, install it as an egg:

git clone https://github.com/RWTH-EBC/ebcpy pip install -e ebcpy

How to get started?

We recommend running our jupyter-notebook to be guided through a helpful tutorial.
For this, run the following code: ```

If jupyter is not already installed:

pip install jupyter

Go into your ebcpy-folder (cd \pathto\ebcpy) or change the path to tutorial.ipynb and run:

jupyter notebook tutorial\tutorial.ipynb ```

Or, clone this repo and look at the examples\README.md file. Here you will find several examples to execute.

How to cite ebcpy

Please use the following metadata to cite ebcpy in your research:

@article{Wuellhorst2022, doi = {10.21105/joss.03861}, url = {https://doi.org/10.21105/joss.03861}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {72}, pages = {3861}, author = {Fabian Wüllhorst and Thomas Storek and Philipp Mehrfeld and Dirk Müller}, title = {AixCaliBuHA: Automated calibration of building and HVAC systems}, journal = {Journal of Open Source Software} }

Time series data

Note that we use steamline time series data based on a pd.DataFrame using a common function and the accessor tsd. The aim is to make tasks like loading different filetypes or common functions more convenient, while conserving the powerful tools of the DataFrame. Just a example intro here:

```python

from ebcpy.datatypes import loadtimeseriesdata df = loadtimeseriesdata(r"pathtoasupported_file")

From Datetime to float

df.tsd.tofloatindex()

From float to datetime

df.tsd.todatetimeindex()

To clean your data and create a common frequency:

df.tsd.cleanandspaceequally(desiredfreq="1s") ```

Documentation

Visit our official Documentation.

Problems or questions?

Please raise an issue here.

For other inquires, please contact ebc-tools@eonerc.rwth-aachen.de.

Owner

  • Name: RWTH Aachen University - E.ON Energy Research Center - Institute for Energy Efficient Buildings and Indoor Climate
  • Login: RWTH-EBC
  • Kind: organization
  • Email: david.jansen@eonerc.rwth-aachen.de
  • Location: RWTH Aachen University, Aachen, Germany

GitHub Events

Total
  • Create event: 15
  • Release event: 4
  • Issues event: 18
  • Watch event: 1
  • Delete event: 11
  • Issue comment event: 9
  • Push event: 71
  • Pull request review comment event: 8
  • Pull request review event: 16
  • Pull request event: 13
  • Fork event: 1
Last Year
  • Create event: 15
  • Release event: 4
  • Issues event: 18
  • Watch event: 1
  • Delete event: 11
  • Issue comment event: 9
  • Push event: 71
  • Pull request review comment event: 8
  • Pull request review event: 16
  • Pull request event: 13
  • Fork event: 1

Committers

Last synced: 6 months ago

All Time
  • Total Commits: 673
  • Total Committers: 28
  • Avg Commits per committer: 24.036
  • Development Distribution Score (DDS): 0.425
Past Year
  • Commits: 53
  • Committers: 4
  • Avg Commits per committer: 13.25
  • Development Distribution Score (DDS): 0.358
Top Committers
Name Email Commits
fabian.wuellhorst f****t@r****e 387
fabian.wuellhorst f****t@e****e 102
Hendrik van der Stok h****k@r****e 84
Sebastian S****s@r****e 15
Thomas Storek t****k@e****e 15
jkriwet j****t@e****e 14
Jonas Klingebiel j****l@e****e 9
Philipp Mehrfeld p****d@r****e 7
David Jansen d****n@e****e 6
MichaMans m****s@h****m 6
Tobias Schellen t****n@e****e 3
jonas.michael.baumgaertner j****r@r****e 3
Philipp Mehrfeld p****d@e****e 3
mre H****3 2
Hannah Romberg h****g@e****e 2
FelixStege 3****e@u****m 2
David d****1@r****e 2
Hendrik van der Stok h****k@e****e 1
Kai Droste k****e@e****e 1
Larissa Kühn l****n@r****e 1
Moritz Zuschlag m****g@r****e 1
Sebastian Blechmann 5****n@u****m 1
Tobias Spratte 1****e@u****m 1
felix.stegemerten f****n@e****e 1
saaiiravi s****1@g****m 1
thomas.storek t****k@r****e 1
tst-jkr j****t@r****e 1
zhiyu.pan z****n@r****e 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 74
  • Total pull requests: 102
  • Average time to close issues: 4 months
  • Average time to close pull requests: 22 days
  • Total issue authors: 19
  • Total pull request authors: 15
  • Average comments per issue: 0.53
  • Average comments per pull request: 0.48
  • Merged pull requests: 87
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 11
  • Pull requests: 16
  • Average time to close issues: 3 days
  • Average time to close pull requests: 2 days
  • Issue authors: 6
  • Pull request authors: 5
  • Average comments per issue: 0.09
  • Average comments per pull request: 0.13
  • Merged pull requests: 11
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • FWuellhorst (36)
  • HvanderStok (12)
  • tstorek (3)
  • jkriwet (3)
  • FelixNienaber (2)
  • HannahRomberg (2)
  • larissakuehn (2)
  • FelixStege (2)
  • MichaMans (2)
  • KaiDroste (1)
  • Cudok (1)
  • MZuschlag (1)
  • Maghnie (1)
  • SBlechmann (1)
  • DaJansenGit (1)
Pull Request Authors
  • FWuellhorst (57)
  • HvanderStok (20)
  • jkriwet (5)
  • FelixStege (3)
  • tosch4 (2)
  • MichaMans (2)
  • larissakuehn (2)
  • HannahRomberg (2)
  • SBlechmann (2)
  • DaJansenGit (2)
  • KaiDroste (1)
  • saaiiravi (1)
  • MZuschlag (1)
  • KBeeser (1)
  • tstorek (1)
Top Labels
Issue Labels
enhancement (8) bug (7) persistent (2) good first issue (1) refactor (1) documentation (1)
Pull Request Labels
documentation (2) hackday (1) hacktoberfest-accepted (1) bug (1)

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 2,951 last-month
  • Total dependent packages: 0
  • Total dependent repositories: 1
  • Total versions: 21
  • Total maintainers: 1
pypi.org: ebcpy

Python Library used for different python modules for the analysis and optimization of energy systems, buildings and indoor climate

  • Versions: 21
  • Dependent Packages: 0
  • Dependent Repositories: 1
  • Downloads: 2,951 Last month
Rankings
Dependent packages count: 10.1%
Downloads: 15.0%
Average: 16.5%
Stargazers count: 16.5%
Forks count: 19.1%
Dependent repos count: 21.6%
Maintainers (1)
Last synced: 6 months ago

Dependencies

requirements.txt pypi
  • fmpy >=0.2.27
  • h5py >=3.1.0
  • matplotlib >=3.3.4
  • numpy >=1.19.5
  • openpyxl >=3.0.5
  • pandas >=1.1.5
  • pydantic >=1.8.2
  • pymoo >=0.4.2
  • scikit-learn >=0.24.2
  • scipy >=1.5.4
  • tables >=3.6.1
  • xlrd >=2.0.1
docs/requirements.txt pypi
  • autodoc_pydantic *
  • m2r2 *
  • sphinx ==6.2.1
  • sphinx-material *
  • sphinx-rtd-theme *
setup.py pypi