Science Score: 54.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (6.1%) to scientific vocabulary

Keywords

cvpr2022 instance-segmentation semi-supervised-learning
Last synced: 6 months ago · JSON representation ·

Repository

Basic Info
  • Host: GitHub
  • Owner: zhenyuw16
  • License: apache-2.0
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 5.85 MB
Statistics
  • Stars: 39
  • Watchers: 1
  • Forks: 6
  • Open Issues: 10
  • Releases: 0
Topics
cvpr2022 instance-segmentation semi-supervised-learning
Created almost 4 years ago · Last pushed almost 4 years ago
Metadata Files
Readme License Citation

README.md

Noisy Boundaries: Lemon or Lemonade for semi-supervised instance segmentation?

This is the mmdetection implementation of our CVPR 2022 paper. ArXiv.

Installation

This code is based on mmdetection v2.18. Please install the code according to the mmdetection step first.

data preparation

bash noisyboundaries data | cityscapes | | annotations | | | instancesonly_filtered_gtFine_train.json | | | instancesonly_filtered_gtFine_val.json | | leftImg8bit | | | train | | | val | coco | | annotations | | | instances_train2017.json | | | instances_val2017.json | | images | | | train2017 | | | val2017

Running scripts

cityscapes

We take the experiment with the 20% labeled images for example.

make the label file first: bash mkdir labels python scripts/cityscapes/prepare_cityscape_data.py --percent 20 --seed 1

Then, to train the supervised model, run: bash bash tools/dist_train.sh configs/noisyboundaries/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes_sup.py 8 With the supervised model, generating pseudo labels for semi-supervised learning: bash bash scripts/cityscapes/extract_pl.sh 8 labels/rcity.pkl labels/cityscapes_1@20_pl.json Then, perform semi-supervised learning: bash bash tools/dist_train.sh configs/noisyboundaries/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes_pl.py 8

Owner

  • Login: zhenyuw16
  • Kind: user

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
  - name: "MMDetection Contributors"
title: "OpenMMLab Detection Toolbox and Benchmark"
date-released: 2018-08-22
url: "https://github.com/open-mmlab/mmdetection"
license: Apache-2.0

GitHub Events

Total
  • Issues event: 1
  • Watch event: 3
  • Fork event: 1
Last Year
  • Issues event: 1
  • Watch event: 3
  • Fork event: 1

Dependencies

docker/Dockerfile docker
  • pytorch/pytorch ${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel build
docker/serve/Dockerfile docker
  • pytorch/pytorch ${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel build
mmdet.egg-info/requires.txt pypi
  • asynctest *
  • cityscapesscripts *
  • codecov *
  • cython *
  • flake8 *
  • imagecorruptions *
  • interrogate *
  • isort ==4.3.21
  • kwarray *
  • matplotlib *
  • mmtrack *
  • numpy *
  • onnx ==1.7.0
  • onnxruntime >=1.8.0
  • pycocotools *
  • pycocotools-windows *
  • pytest *
  • scipy *
  • six *
  • sklearn *
  • terminaltables *
  • ubelt *
  • xdoctest >=0.10.0
  • yapf *
requirements/build.txt pypi
  • cython *
  • numpy *
requirements/docs.txt pypi
  • docutils ==0.16.0
  • recommonmark *
  • sphinx ==4.0.2
  • sphinx-copybutton *
  • sphinx_markdown_tables *
  • sphinx_rtd_theme ==0.5.2
requirements/mminstall.txt pypi
  • mmcv-full >=1.3.8
requirements/optional.txt pypi
  • cityscapesscripts *
  • imagecorruptions *
  • scipy *
  • sklearn *
requirements/readthedocs.txt pypi
  • mmcv *
  • torch *
  • torchvision *
requirements/runtime.txt pypi
  • matplotlib *
  • numpy *
  • pycocotools *
  • pycocotools-windows *
  • six *
  • terminaltables *
requirements/tests.txt pypi
  • asynctest * test
  • codecov * test
  • flake8 * test
  • interrogate * test
  • isort ==4.3.21 test
  • kwarray * test
  • mmtrack * test
  • onnx ==1.7.0 test
  • onnxruntime >=1.8.0 test
  • pytest * test
  • ubelt * test
  • xdoctest >=0.10.0 test
  • yapf * test
requirements.txt pypi
setup.py pypi