biotrove
NeurIPS 2024 Track on Datasets and Benchmarks (Spotlight)
Science Score: 59.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 3 DOI reference(s) in README -
✓Academic publication links
Links to: arxiv.org -
✓Committers with academic emails
3 of 10 committers (30.0%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.6%) to scientific vocabulary
Keywords
Repository
NeurIPS 2024 Track on Datasets and Benchmarks (Spotlight)
Basic Info
- Host: GitHub
- Owner: baskargroup
- Language: Jupyter Notebook
- Default Branch: main
- Homepage: https://baskargroup.github.io/BioTrove/
- Size: 195 MB
Statistics
- Stars: 31
- Watchers: 2
- Forks: 4
- Open Issues: 3
- Releases: 0
Topics
Metadata Files
README.md
BioTrove: A Large Curated Image Dataset Enabling AI for Biodiversity
Contents
Data Preprocessing
Before using this script, please download the metadata from Hugging Face and pre-process the data using the biotrove_process library. The library is located in the BioTrove-preprocess/biotrove_process directory. A detailed description can be found in the README file.
The library contains scripts to generate machine learning-ready image-text pairs from the downloaded metadata in four steps:
- Processing metadata files to obtain category and species distribution.
- Filtering metadata based on user-defined thresholds and generating shuffled chunks.
- Downloading images based on URLs in the metadata.
- Generating text labels for the images.
Model Training
We train three models using a modified version of the BioCLIP/OpenCLIP codebase. Each model is trained for 40 epochs on BioTrove-40M, on 2 nodes, 8xH100 GPUs, on NYU's Greene high-performance compute cluster.
We optimize our hyperparameters prior to training with Ray. Our standard training parameters are as follows:
--dataset-type webdataset
--pretrained openai
--text_type random
--dataset-resampled
--warmup 5000
--batch-size 4096
--accum-freq 1
--epochs 40
--workers 8
--model ViT-B-16
--lr 0.0005
--wd 0.0004
--precision bf16
--beta1 0.98
--beta2 0.99
--eps 1.0e-6
--local-loss
--gather-with-grad
--ddp-static-graph
--grad-checkpointing
For more extensive documentation of the training process and the significance of each hyperparameter, we recommend referencing the OpenCLIP and BioCLIP documentation, respectively.
Model weights
See the BioTrove-CLIP Model card on HuggingFace to download the trained model checkpoints.
We released three trained model checkpoints in the BioTrove-CLIP model card on HuggingFace. These CLIP-style models were trained on BioTrove-Train (40M) for the following configurations:
- BT-CLIP-O: Trained a ViT-B/16 backbone initialized from the OpenCLIP's checkpoint. The training was conducted for 40 epochs.
- BT-CLIP-B: Trained a ViT-B/16 backbone initialized from the BioCLIP's checkpoint. The training was conducted for 8 epochs.
- BT-CLIP-M: Trained a ViT-L/14 backbone initialized from the MetaCLIP's checkpoint. The training was conducted for 12 epochs.
These models were developed for the benefit of the AI community as an open-source product. Thus, we request that any derivative products are also open-source.
Model Validation
For validating the zero-shot accuracy of our trained models and comparing to other benchmarks, we use the VLHub repository with some slight modifications.
Pre-Run
After cloning this repository and navigating to the BioTrove/model_validation directory, we recommend installing all the project requirements into a conda container; pip install -r requirements.txt. Also, before executing a command in VLHub, please add BioTrove/model_validation/src to your PYTHONPATH.
bash
export PYTHONPATH="$PYTHONPATH:$PWD/src";
Base Command
A basic BioTrove model evaluation command can be launched as follows. This example would evaluate a CLIP-ResNet50 checkpoint whose weights resided at the path designated via the --resume flag on the ImageNet validation set, and would report the results to Weights and Biases.
bash
python src/training/main.py --batch-size=32 --workers=8 --imagenet-val "/imagenet/val/" --model="resnet50" --zeroshot-frequency=1 --image-size=224 --resume "/PATH/TO/WEIGHTS.pth" --report-to wandb
Baseline Models
We compare our trained checkpoints to three strong baselines. We describe our baselines in the table below, including the required flags to evaluate them.
| Model Name | Origin | Path to checkpoint | Runtime Flags | |-------------|----------------------------------------------|-------------------------------------------|---------------------------------------------------------| | BioCLIP | https://arxiv.org/abs/2311.18803 | https://huggingface.co/imageomics/bioclip | --model ViT-B-16 --resume "/PATH/TO/bioclipckpt.bin" | | OpenAI CLIP | https://arxiv.org/abs/2103.00020 | Downloads automatically | --model ViT-B-16 --pretrained=openai | | MetaCLIP-cc | https://github.com/facebookresearch/MetaCLIP | Downloads automatically | --model ViT-L-14-quickgelu --pretrained=metaclipfullcc |
Existing Benchmarks
In the BioTrove paper, we report results on the following established benchmarks from prior scientific literature: Birds525, BioCLIP-Rare, IP102 Insects, Fungi, Deepweeds, and Confounding Species. We also introduce three new benchmarks: BioTrove-Balanced, BioTrove-LifeStages, and BioTrove-Unseen.
Our package expects a valid path to each image to exist in its corresponding metadata file; therefore, metadata CSV paths must be updated before running each benchmark.
| Benchmark Name | Images URL | Metadata Path | Runtime Flag(s) | |---------------------|------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------| | BioTrove-Balanced | https://huggingface.co/datasets/BGLab/BioTrove-Train | https://huggingface.co/datasets/BGLab/BioTrove/tree/main/BioTrove-benchmark/BioTrove-Balanced.csv | --arbor-val --taxon MYTAXON | | BioTrove-Lifestages | https://huggingface.co/datasets/BGLab/BioTrove-Train | https://huggingface.co/datasets/BGLab/BioTrove/tree/main/BioTrove-benchmark/BioTrove-LifeStages.csv | --lifestages --taxon MYTAXON | | BioTrove-Unseen | https://huggingface.co/datasets/BGLab/BioTrove-Train | https://huggingface.co/datasets/BGLab/BioTrove/tree/main/BioTrove-benchmark/BioTrove-Unseen.csv | --arbor-rare --taxon MYTAXON | | BioCLIP Rare | https://huggingface.co/datasets/imageomics/rare-species | modelvalidation/metadata/bioclip-rare-metadata.csv | --bioclip-rare --taxon MYTAXON | | Birds525 | https://www.kaggle.com/datasets/gpiosenka/100-bird-species | modelvalidation/metadata/birds525metadata.csv | --birds /birds525 --ds-filter birds | | Confounding Species | TBD | modelvalidation/metadata/confoundingspecies.csv | --confounding | | Deepweeds | https://www.kaggle.com/datasets/imsparsh/deepweeds | modelvalidation/metadata/deepweedsmetadata.csv | --deepweeds | | Fungi | http://ptak.felk.cvut.cz/plants/DanishFungiDataset/DF20M-images.tar.gz | modelvalidation/metadata/fungimetadata.csv | --fungi | | IP102 Insects | https://www.kaggle.com/datasets/rtlmhjbn/ip02-dataset | modelvalidation/metadata/ins2_metadata.csv | --insects2 |
Acknowledgments
If you find this repository useful, please consider citing these related papers --
VLHub
bibtex
@article{
feuer2023distributionally,
title={Distributionally Robust Classification on a Data Budget},
author={Benjamin Feuer and Ameya Joshi and Minh Pham and Chinmay Hegde},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2023},
url={https://openreview.net/forum?id=D5Z2E8CNsD},
note={}
}
BioCLIP
bibtex
@misc{stevens2024bioclip,
title={BioCLIP: A Vision Foundation Model for the Tree of Life},
author={Samuel Stevens and Jiaman Wu and Matthew J Thompson and Elizabeth G Campolongo and Chan Hee Song and David Edward Carlyn and Li Dong and Wasila M Dahdul and Charles Stewart and Tanya Berger-Wolf and Wei-Lun Chao and Yu Su},
year={2024},
eprint={2311.18803},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
OpenCLIP
bibtex
@software{ilharco_gabriel_2021_5143773,
author = {Ilharco, Gabriel and
Wortsman, Mitchell and
Wightman, Ross and
Gordon, Cade and
Carlini, Nicholas and
Taori, Rohan and
Dave, Achal and
Shankar, Vaishaal and
Namkoong, Hongseok and
Miller, John and
Hajishirzi, Hannaneh and
Farhadi, Ali and
Schmidt, Ludwig},
title = {OpenCLIP},
month = jul,
year = 2021,
note = {If you use this software, please cite it as below.},
publisher = {Zenodo},
version = {0.1},
doi = {10.5281/zenodo.5143773},
url = {https://doi.org/10.5281/zenodo.5143773}
}
Parts of this project page were adopted from the Nerfies page.
Website License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation
bibtex
@misc{yang2024arboretumlargemultimodaldataset,
title={Arboretum: A Large Multimodal Dataset Enabling AI for Biodiversity},
author={Chih-Hsuan Yang, Benjamin Feuer, Zaki Jubery, Zi K. Deng, Andre Nakkab, Md Zahid Hasan, Shivani Chiranjeevi, Kelly Marshall, Nirmal Baishnab, Asheesh K Singh, Arti Singh, Soumik Sarkar, Nirav Merchant, Chinmay Hegde, Baskar Ganapathysubramanian},
year={2024},
eprint={2406.17720},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2406.17720},
}
Owner
- Name: BaskarGroup
- Login: BaskarGroup
- Kind: organization
- Repositories: 1
- Profile: https://github.com/BaskarGroup
GitHub Events
Total
- Issues event: 1
- Watch event: 13
- Issue comment event: 3
- Member event: 2
- Push event: 34
- Fork event: 1
- Create event: 2
Last Year
- Issues event: 1
- Watch event: 13
- Issue comment event: 3
- Member event: 2
- Push event: 34
- Fork event: 1
- Create event: 2
Committers
Last synced: 6 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Zahid-isu | 8****u | 110 |
| zahid | 8****u | 33 |
| penfever | p****r@g****m | 29 |
| znjubery | z****y@g****m | 28 |
| Ben Feuer | p****r@h****m | 23 |
| André | 7****3 | 10 |
| ChihHsuan-Yang | 6****g | 5 |
| Nirmal | n****l@i****u | 4 |
| Kelly Marshall | k****8@n****u | 4 |
| Kelly Marshall | k****8@l****u | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 2
- Total pull requests: 4
- Average time to close issues: 3 months
- Average time to close pull requests: about 1 hour
- Total issue authors: 2
- Total pull request authors: 3
- Average comments per issue: 0.5
- Average comments per pull request: 0.25
- Merged pull requests: 2
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 1
- Pull requests: 1
- Average time to close issues: 3 months
- Average time to close pull requests: N/A
- Issue authors: 1
- Pull request authors: 1
- Average comments per issue: 1.0
- Average comments per pull request: 1.0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- johnbradley (1)
Pull Request Authors
- Km3888 (2)
- hlapp (1)
- ajn313 (1)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- aiohttp ==3.9.5
- aiosignal ==1.3.1
- async-timeout ==4.0.3
- attrs ==23.2.0
- contourpy ==1.2.1
- cramjam ==2.8.3
- cycler ==0.12.1
- fastparquet ==2024.5.0
- fonttools ==4.53.0
- frozenlist ==1.4.1
- fsspec ==2024.6.0
- idna ==3.7
- importlib_resources ==6.4.0
- kiwisolver ==1.4.5
- matplotlib ==3.9.0
- multidict ==6.0.5
- numpy ==1.26.4
- packaging ==24.1
- pandas ==2.2.2
- pillow ==10.3.0
- pyarrow ==16.1.0
- pyparsing ==3.1.2
- python-dateutil ==2.9.0.post0
- pytz ==2024.1
- seaborn ==0.13.2
- six ==1.16.0
- tqdm ==4.66.4
- tzdata ==2024.1
- yarl ==1.9.4
- zipp ==3.19.2
- Jinja2 *
- Markdown *
- MarkupSafe *
- PyYAML *
- Werkzeug *
- absl-py *
- braceexpand *
- cachetools *
- certifi *
- charset-normalizer *
- filelock *
- fsspec *
- ftfy *
- google-auth *
- google-auth-oauthlib *
- grpcio *
- huggingface-hub *
- idna *
- mpmath *
- networkx *
- numpy *
- nvidia-cublas-cu12 *
- nvidia-cuda-cupti-cu12 *
- nvidia-cuda-nvrtc-cu12 *
- nvidia-cuda-runtime-cu12 *
- nvidia-cudnn-cu12 *
- nvidia-cufft-cu12 *
- nvidia-curand-cu12 *
- nvidia-cusolver-cu12 *
- nvidia-cusparse-cu12 *
- nvidia-nccl-cu12 *
- nvidia-nvjitlink-cu12 *
- nvidia-nvtx-cu12 *
- oauthlib *
- packaging *
- pandas *
- pillow *
- protobuf *
- pyasn1 *
- pyasn1-modules *
- python-dateutil *
- pytz *
- regex *
- requests *
- requests-oauthlib *
- rsa *
- safetensors *
- six *
- sympy *
- tensorboard *
- tensorboard-data-server *
- timm *
- tokenizers *
- torch *
- torchvision *
- tqdm *
- transformers *
- triton *
- typing_extensions *
- tzdata *
- urllib3 *
- wcwidth *
- webdataset *
- pandas ==2.1.2
- plotly =5.18.0
- Jinja2 *
- MarkupSafe *
- PyYAML *
- certifi *
- charset-normalizer *
- cmake *
- filelock *
- fsspec *
- ftfy *
- huggingface-hub *
- idna *
- lit *
- mpmath *
- networkx *
- numpy *
- nvidia-cublas-cu11 *
- nvidia-cuda-cupti-cu11 *
- nvidia-cuda-nvrtc-cu11 *
- nvidia-cuda-runtime-cu11 *
- nvidia-cudnn-cu11 *
- nvidia-cufft-cu11 *
- nvidia-curand-cu11 *
- nvidia-cusolver-cu11 *
- nvidia-cusparse-cu11 *
- nvidia-nccl-cu11 *
- nvidia-nvtx-cu11 *
- packaging *
- pandas *
- pillow *
- python-dateutil *
- pytz *
- regex *
- requests *
- safetensors *
- scipy *
- six *
- sympy *
- tokenizers *
- torch *
- torchvision *
- tqdm *
- transformers *
- triton *
- typing_extensions *
- tzdata *
- urllib3 *
- wcwidth *
- braceexpand *
- byol-pytorch *
- clip-benchmark ==1.4.0
- coca-pytorch *
- datasets ==2.8.0
- ftfy *
- fuzzywuzzy *
- huggingface_hub *
- nltk *
- open_clip_torch *
- pandas <=1.4.0
- regex *
- scikit-learn *
- scipy *
- seaborn *
- tensorboard *
- timm *
- torch >=1.9.0
- torchvision *
- tqdm *
- vit-pytorch *
- wandb *
- webdataset >=0.2.5
- x-clip *
- braceexpand *
- byol-pytorch *
- coca-pytorch *
- ftfy *
- fuzzywuzzy *
- huggingface_hub *
- nltk *
- open_clip_torch *
- pandas <=1.4.0
- regex *
- scikit-learn *
- scipy *
- seaborn *
- tensorboard *
- timm *
- tqdm *
- vit-pytorch *
- wandb *
- webdataset >=0.2.5
- x-clip *
- braceexpand *
- byol-pytorch *
- coca-pytorch *
- ftfy *
- fuzzywuzzy *
- huggingface_hub *
- nltk *
- open_clip_torch *
- pandas <=1.4.0
- pyarrow *
- ray *
- regex *
- scikit-learn *
- scipy *
- seaborn *
- tensorboard *
- timm *
- torch >=1.9.0
- torchvision *
- tqdm *
- vit-pytorch *
- wandb *
- webdataset >=0.2.5
- x-clip *