magicbathynet
Quick start guide for benchmarking MagicBathyNet dataset in learning-based bathymetry and pixel-based classification using Remote Sensing imagery.
Science Score: 49.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 5 DOI reference(s) in README -
✓Academic publication links
Links to: arxiv.org, ieee.org, zenodo.org -
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (9.9%) to scientific vocabulary
Keywords
Repository
Quick start guide for benchmarking MagicBathyNet dataset in learning-based bathymetry and pixel-based classification using Remote Sensing imagery.
Basic Info
- Host: GitHub
- Owner: pagraf
- License: other
- Language: Jupyter Notebook
- Default Branch: main
- Homepage: https://www.magicbathy.eu
- Size: 813 KB
Statistics
- Stars: 34
- Watchers: 1
- Forks: 4
- Open Issues: 1
- Releases: 1
Topics
Metadata Files
README.md
MagicBathyNet: A Multimodal Remote Sensing Dataset for Benchmarking Learning-based Bathymetry and Pixel-based Classification in Shallow Waters
MagicBathyNet is a benchmark dataset made up of image patches of Sentinel-2, SPOT-6 and aerial imagery, bathymetry in raster format and seabed classes annotations. Dataset also facilitates unsupervised learning for model pre-training in shallow coastal areas. It is developed in the context of MagicBathy project.
DOI of GitHub Repository
Package for benchmarking MagicBathyNet dataset in learning-based bathymetry and pixel-based classification.
This repository contains the code of the paper "P. Agrafiotis, Ł. Janowski, D. Skarlatos and B. Demir, "MAGICBATHYNET: A Multimodal Remote Sensing Dataset for Bathymetry Prediction and Pixel-Based Classification in Shallow Waters," IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024, pp. 249-253, doi: 10.1109/IGARSS53475.2024.10641355."
Citation
If you find this repository useful, please consider giving a star ⭐.
If you use the code in this repository or the dataset please cite:
P. Agrafiotis, Ł. Janowski, D. Skarlatos and B. Demir, "MAGICBATHYNET: A Multimodal Remote Sensing Dataset for Bathymetry Prediction and Pixel-Based Classification in Shallow Waters," IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024, pp. 249-253, doi: 10.1109/IGARSS53475.2024.10641355.
@INPROCEEDINGS{10641355, author={Agrafiotis, Panagiotis and Janowski, Łukasz and Skarlatos, Dimitrios and Demir, Begüm}, booktitle={IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium}, title={MAGICBATHYNET: A Multimodal Remote Sensing Dataset for Bathymetry Prediction and Pixel-Based Classification in Shallow Waters}, year={2024}, volume={}, number={}, pages={249-253}, doi={10.1109/IGARSS53475.2024.10641355}}
Getting started
Downloading the dataset
For downloading the dataset and a detailed explanation of it, please visit the MagicBathy Project website at https://www.magicbathy.eu/magicbathynet.html
Dataset structure
The folder structure should be as follows:
┗ 📂 magicbathynet/
┣ 📂 agia_napa/
┃ ┣ 📂 img/
┃ ┃ ┣ 📂 aerial/
┃ ┃ ┃ ┣ 📜 img_339.tif
┃ ┃ ┃ ┣ 📜 ...
┃ ┃ ┣ 📂 s2/
┃ ┃ ┃ ┣ 📜 img_339.tif
┃ ┃ ┃ ┣ 📜 ...
┃ ┃ ┣ 📂 spot6/
┃ ┃ ┃ ┣ 📜 img_339.tif
┃ ┃ ┃ ┣ 📜 ...
┃ ┣ 📂 depth/
┃ ┃ ┣ 📂 aerial/
┃ ┃ ┃ ┣ 📜 depth_339.tif
┃ ┃ ┃ ┣ 📜 ...
┃ ┃ ┣ 📂 s2/
┃ ┃ ┃ ┣ 📜 depth_339.tif
┃ ┃ ┃ ┣ 📜 ...
┃ ┃ ┣ 📂 spot6/
┃ ┃ ┃ ┣ 📜 depth_339.tif
┃ ┃ ┃ ┣ 📜 ...
┃ ┣ 📂 gts/
┃ ┃ ┣ 📂 aerial/
┃ ┃ ┃ ┣ 📜 gts_339.tif
┃ ┃ ┃ ┣ 📜 ...
┃ ┃ ┣ 📂 s2/
┃ ┃ ┃ ┣ 📜 gts_339.tif
┃ ┃ ┃ ┣ 📜 ...
┃ ┃ ┣ 📂 spot6/
┃ ┃ ┃ ┣ 📜 gts_339.tif
┃ ┃ ┃ ┣ 📜 ...
┃ ┣ 📜 [modality]_split_bathymetry.txt
┃ ┣ 📜 [modality]_split_pixel_class.txt
┃ ┣ 📜 norm_param_[modality]_an.txt
┃
┣ 📂 puck_lagoon/
┃ ┣ 📂 img/
┃ ┃ ┣ 📜 ...
┃ ┣ 📂 depth/
┃ ┃ ┣ 📜 ...
┃ ┣ 📂 gts/
┃ ┃ ┣ 📜 ...
┃ ┣ 📜 [modality]_split_bathymetry.txt
┃ ┣ 📜 [modality]_split_pixel_class.txt
┃ ┣ 📜 norm_param_[modality]_pl.txt
The mapping between RGB color values and classes is:
``` For the Agia Napa area: 0 : (0, 128, 0), #seagrass 1 : (0, 0, 255), #rock 2 : (255, 0, 0), #macroalgae 3 : (255, 128, 0), #sand 4 : (0, 0, 0)} #Undefined (black)
For the Puck Lagoon area: 0 : (255, 128, 0), #sand 1 : (0, 128, 0) , #eelgrass/pondweed 2 : (0, 0, 0)} #Undefined (black) ```
Clone the repo
git clone https://github.com/pagraf/MagicBathyNet.git
Installation Guide
The requirements are easily installed via Anaconda (recommended):
conda env create -f environment.yml
After the installation is completed, activate the environment:
conda activate magicbathynet
Open Jupyter Notebook:
jupyter notebook
Train and Test the models
To train and test the bathymetry models use MagicBathyNet_bathymetry.ipynb.
To train and test the pixel-based classification models use MagicBathyNet_pixelclass.ipynb.
Pre-trained Deep Learning Models
We provide code and model weights for the following deep learning models that have been pre-trained on MagicBathyNet for pixel-based classification and bathymetry tasks:
Pixel-based classification
| Model Names | Modality | Area | Pre-Trained PyTorch Models | | ----------- |----------| ---- |----------------------------------------------------------------------------------------------------------------------------------------------| | U-Net | Aerial | Agia Napa | unetaerialan.zip | | SegFormer | Aerial | Agia Napa | segformeraerialan.zip | | U-Net | Aerial | Puck Lagoon | unetaerialpl.zip | | SegFormer | Aerial | Puck Lagoon | segformeraerialpl.zip | | U-Net | SPOT-6 | Agia Napa | unetspot6an.zip | | SegFormer | SPOT-6 | Agia Napa | segformerspot6an.zip | | U-Net | SPOT-6 | Puck Lagoon | unetspot6pl.zip | | SegFormer | SPOT-6 | Puck Lagoon | segformerspot6pl.zip | | U-Net | Sentinel-2 | Agia Napa | unets2an.zip | | SegFormer | Sentinel-2 | Agia Napa | segformers2an.zip | | U-Net | Sentinel-2 | Puck Lagoon | unets2pl.zip | | SegFormer | Sentinel-2 | Puck Lagoon | segformers2pl.zip |
Learning-based Bathymetry
| Model Name | Modality | Area | Pre-Trained PyTorch Models | | ----------- |----------| ---- |----------------------------------------------------------------------------------------------------------------------------------------------| | Modified U-Net for bathymetry | Aerial | Agia Napa | bathymetryaerialan.zip | | Modified U-Net for bathymetry | Aerial | Puck Lagoon | bathymetryaerialpl.zip | | Modified U-Net for bathymetry | SPOT-6 | Agia Napa | bathymetryspot6an.zip | | Modified U-Net for bathymetry | SPOT-6 | Puck Lagoon | bathymetryspot6pl.zip | | Modified U-Net for bathymetry | Sentinel-2 | Agia Napa | bathymetrys2an.zip | | Modified U-Net for bathymetry | Sentinel-2 | Puck Lagoon | bathymetrys2pl.zip |
To achieve the results presented in the paper, use the parameters and the specific train-evaluation splits provided in the dataset. Parameters can be found here while train-evaluation splits are included in the dataset.
Example testing results
Example patch of the Agia Napa area (left), pixel classification results obtained by U-Net (middle) and predicted bathymetry obtained by MagicBathy-U-Net (right). For more information on the results and accuracy achieved read our paper.
Authors
Panagiotis Agrafiotis https://www.user.tu-berlin.de/pagraf/
Feedback
Feel free to give feedback, by sending an email to: agrafiotis@tu-berlin.de
Funding
This work is part of MagicBathy project funded by the European Union’s HORIZON Europe research and innovation programme under the Marie Skłodowska-Curie GA 101063294. Work has been carried out at the Remote Sensing Image Analysis group. For more information about the project visit https://www.magicbathy.eu/.
Owner
- Name: Panagiotis Agrafiotis
- Login: pagraf
- Kind: user
- Location: Athens Greece
- Company: National Technical University of Athens
- Website: http://users.ntua.gr/pagraf/
- Repositories: 1
- Profile: https://github.com/pagraf
GitHub Events
Total
- Issues event: 1
- Watch event: 11
- Issue comment event: 2
- Push event: 17
- Fork event: 3
Last Year
- Issues event: 1
- Watch event: 11
- Issue comment event: 2
- Push event: 17
- Fork event: 3
Committers
Last synced: 6 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Panagiotis Agrafiotis | a****s@g****m | 243 |
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 1
- Total pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Total issue authors: 1
- Total pull request authors: 0
- Average comments per issue: 2.0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 1
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 1
- Pull request authors: 0
- Average comments per issue: 2.0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- vinson2233 (1)
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 2
- Total downloads: unknown
-
Total dependent packages: 0
(may contain duplicates) -
Total dependent repositories: 0
(may contain duplicates) - Total versions: 2
proxy.golang.org: github.com/pagraf/MagicBathyNet
- Documentation: https://pkg.go.dev/github.com/pagraf/MagicBathyNet#section-documentation
- License: other
-
Latest release: v1.0.0
published 11 months ago
Rankings
proxy.golang.org: github.com/pagraf/magicbathynet
- Documentation: https://pkg.go.dev/github.com/pagraf/magicbathynet#section-documentation
- License: other
-
Latest release: v1.0.0
published 11 months ago
Rankings
Dependencies
- argon2-cffi ==21.3.0
- argon2-cffi-bindings ==21.2.0
- async-generator ==1.10
- backcall ==0.2.0
- bleach ==4.1.0
- branca ==0.5.0
- cartopy ==0.19.0.post1
- cmocean ==2.0
- comm ==0.1.4
- decorator ==4.4.2
- defusedxml ==0.7.1
- dill ==0.3.4
- entrypoints ==0.4
- folium ==0.13.0
- geoarray ==0.15.8
- geojson ==2.5.0
- imageio ==2.15.0
- importlib-metadata ==4.8.3
- ipykernel ==5.5.6
- ipython ==7.16.3
- ipython-genutils ==0.2.0
- ipywidgets ==7.8.1
- jedi ==0.17.2
- jinja2 ==3.0.3
- jsonschema ==3.2.0
- jupyter ==1.0.0
- jupyter-client ==7.1.2
- jupyter-console ==6.4.3
- jupyter-core ==4.9.2
- jupyterlab-pygments ==0.1.2
- jupyterlab-widgets ==1.1.7
- markupsafe ==2.0.1
- mistune ==0.8.4
- nbclient ==0.5.9
- nbconvert ==6.0.7
- nbformat ==5.1.3
- nest-asyncio ==1.6.0
- networkx ==2.5.1
- notebook ==6.4.10
- packaging ==21.3
- pandocfilters ==1.5.1
- parso ==0.7.1
- pexpect ==4.9.0
- pickleshare ==0.7.5
- pillow ==8.4.0
- plotly ==5.13.1
- prometheus-client ==0.17.1
- prompt-toolkit ==3.0.36
- ptyprocess ==0.7.0
- py-tools-ds ==0.20.2
- pyepsg ==0.4.0
- pyfftw ==0.12.0
- pygments ==2.14.0
- pykrige ==1.6.1
- pyrsistent ==0.18.0
- pyshp ==2.3.1
- pywavelets ==1.1.1
- pyzmq ==25.1.2
- qtconsole ==5.2.2
- qtpy ==2.0.1
- scikit-image ==0.17.2
- send2trash ==1.8.3
- spectral ==0.23.1
- tenacity ==8.2.2
- terminado ==0.12.1
- testpath ==0.6.0
- tifffile ==2020.9.3
- traitlets ==4.3.3
- wcwidth ==0.2.13
- webencodings ==0.5.1
- widgetsnbextension ==3.6.6
- yellowbrick ==1.3.post1
- zipp ==3.6.0