https://github.com/autogluon/autogluon

Fast and Accurate ML in 3 Lines of Code

https://github.com/autogluon/autogluon

Science Score: 46.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Committers with academic emails
    13 of 135 committers (9.6%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (16.4%) to scientific vocabulary

Keywords

autogluon automated-machine-learning automl computer-vision data-science deep-learning ensemble-learning forecasting gluon hyperparameter-optimization machine-learning natural-language-processing object-detection python pytorch scikit-learn structured-data tabular-data time-series transfer-learning

Keywords from Contributors

mxnet semantic-segmentation pose-estimation person-reid gan action-recognition transformer large-language-models pretrained-models distributed
Last synced: 6 months ago · JSON representation

Repository

Fast and Accurate ML in 3 Lines of Code

Basic Info
  • Host: GitHub
  • Owner: autogluon
  • License: apache-2.0
  • Language: Python
  • Default Branch: master
  • Homepage: https://auto.gluon.ai/
  • Size: 22.6 MB
Statistics
  • Stars: 9,369
  • Watchers: 97
  • Forks: 1,053
  • Open Issues: 425
  • Releases: 0
Topics
autogluon automated-machine-learning automl computer-vision data-science deep-learning ensemble-learning forecasting gluon hyperparameter-optimization machine-learning natural-language-processing object-detection python pytorch scikit-learn structured-data tabular-data time-series transfer-learning
Created over 6 years ago · Last pushed 6 months ago
Metadata Files
Readme Contributing License Code of conduct Security Roadmap

README.md

## Fast and Accurate ML in 3 Lines of Code [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases) [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon) [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/) [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon) [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE) [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N) [![Twitter](https://img.shields.io/twitter/follow/autogluon?style=social)](https://twitter.com/autogluon) [![Continuous Integration](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml) [![Platform Tests](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml/badge.svg?event=schedule)](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml) [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)

AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.

💾 Installation

AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.

You can install AutoGluon with:

python pip install autogluon

Visit our Installation Guide for detailed instructions, including GPU support, Conda installs, and optional dependencies.

:zap: Quickstart

Build accurate end-to-end ML models in just 3 lines of code!

python from autogluon.tabular import TabularPredictor predictor = TabularPredictor(label="class").fit("train.csv", presets="best") predictions = predictor.predict("test.csv")

| AutoGluon Task | Quickstart | API | |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:| | TabularPredictor | Quick Start | API | | MultiModalPredictor | Quick Start | API | | TimeSeriesPredictor | Quick Start | API |

:mag: Resources

Hands-on Tutorials / Talks

Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available here.

| Title | Format | Location | Date | |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------| | :tv: AutoGluon: Towards No-Code Automated Machine Learning | Tutorial | AutoML 2024 | 2024/09/09 | | :tv: AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code | Tutorial | AutoML 2023 | 2023/09/12 | | :sound: AutoGluon: The Story | Podcast | The AutoML Podcast | 2023/09/05 | | :tv: AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data | Tutorial | PyData Berlin | 2023/06/20 | | :tv: Solving Complex ML Problems in a few Lines of Code with AutoGluon | Tutorial | PyData Seattle | 2023/06/20 | | :tv: The AutoML Revolution | Tutorial | Fall AutoML School 2022 | 2022/10/18 |

Scientific Publications

Articles

Train/Deploy AutoGluon in the Cloud

:pencil: Citing AutoGluon

If you use AutoGluon in a scientific publication, please refer to our citation guide.

:wave: How to get involved

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

:classical_building: License

This library is licensed under the Apache 2.0 License.

Owner

  • Name: autogluon
  • Login: autogluon
  • Kind: organization

Committers

Last synced: 9 months ago

All Time
  • Total Commits: 2,579
  • Total Committers: 135
  • Avg Commits per committer: 19.104
  • Development Distribution Score (DDS): 0.717
Past Year
  • Commits: 361
  • Committers: 27
  • Avg Commits per committer: 13.37
  • Development Distribution Score (DDS): 0.637
Top Committers
Name Email Commits
Nick Erickson n****k@a****m 729
Oleksandr Shchur s****o@a****m 268
Weisu Yin w****y@a****m 195
Zhiqiang Tang z****g@r****u 189
Alexander Shirkov 1****y 146
Caner Turkmen t****c@g****m 101
Xingjian Shi x****b@c****k 90
Haoyang Fang 1****u 88
Jonas Mueller 1****r 70
Prateek M Desai p****4@g****m 60
tonyhu t****o 58
Hang Zhang z****g@r****u 44
Su Zhou z****u@a****m 40
Shuai Zhang c****n@g****m 32
Liangfu Chen l****c@a****m 31
cgraywang w****u@g****m 29
gidler g****r@a****m 23
Joshua Z. Zhang c****h@g****m 22
mseeger m****s@a****e 22
Razmik Melikbekyan m****n@y****m 20
Yi Zhu y****9@g****m 19
Richard Wang y****w@a****m 18
Zihan Zhong 5****h 16
Lennart Purucker c****t@l****m 13
Abdul Fatir A****s@g****m 12
Yiqing Shen 4****s 11
XiaoLiang 7****x 10
Taojiannan Yang V****Y@G****M 9
Hang Zhang h****s@a****m 8
Chongruo Wu c****o@g****m 8
and 105 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 871
  • Total pull requests: 1,687
  • Average time to close issues: 6 months
  • Average time to close pull requests: 13 days
  • Total issue authors: 391
  • Total pull request authors: 76
  • Average comments per issue: 1.47
  • Average comments per pull request: 2.35
  • Merged pull requests: 1,320
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 293
  • Pull requests: 781
  • Average time to close issues: 17 days
  • Average time to close pull requests: 5 days
  • Issue authors: 130
  • Pull request authors: 47
  • Average comments per issue: 0.92
  • Average comments per pull request: 1.74
  • Merged pull requests: 588
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • Innixma (176)
  • shchur (59)
  • tonyhoo (18)
  • celestinoxp (18)
  • Killer3048 (18)
  • obwohl (13)
  • canerturkmen (9)
  • DAD-FOX (9)
  • yinweisu (8)
  • prateekdesai04 (7)
  • Ai-Ya-Ya (7)
  • suzhoum (7)
  • gradientsky (7)
  • rxjx (6)
  • luochixq (6)
Pull Request Authors
  • Innixma (409)
  • shchur (348)
  • tonyhoo (128)
  • prateekdesai04 (119)
  • canerturkmen (115)
  • suzhoum (88)
  • FANGAreNotGnu (61)
  • zhiqiangdon (53)
  • yinweisu (45)
  • LennartPurucker (34)
  • abdulfatir (28)
  • Harry-zzh (25)
  • gradientsky (17)
  • FireballDWF (14)
  • celestinoxp (14)
Top Labels
Issue Labels
Needs Triage (312) bug: unconfirmed (251) enhancement (248) module: tabular (220) API & Doc (123) bug (121) module: timeseries (105) priority: 1 (87) priority: 0 (87) module: multimodal (71) priority: 2 (48) dependency (35) question (32) install (25) help wanted (19) code cleanup (16) discussion (13) resource: GPU (12) OS: Mac (12) OS: Windows (11) env: kaggle (8) urgent (6) enhancement: new task (6) feature request (5) module: eda (5) env: new (4) todo (4) module: common (4) good first issue (3) feature: hpo (3)
Pull Request Labels
module: tabular (236) module: timeseries (220) run-multi-gpu (142) enhancement (140) model list checked (137) bug (123) priority: 0 (81) API & Doc (79) code cleanup (67) module: multimodal (41) dependency (38) module: common (18) install (16) priority: 1 (15) breaking (9) module: features (8) OS: Windows (7) module: core (7) needs: benchmark (6) resource: GPU (6) module: eda (5) feature: hpo (4) env: kaggle (3) env: colab (2) priority: 2 (2) OS: Mac (2) wontfix (1)

Packages

  • Total packages: 23
  • Total downloads:
    • pypi 1,669,695 last-month
  • Total docker downloads: 4,958,235
  • Total dependent packages: 65
    (may contain duplicates)
  • Total dependent repositories: 330
    (may contain duplicates)
  • Total versions: 12,506
  • Total maintainers: 6
  • Total advisories: 1
pypi.org: autogluon.core

Fast and Accurate ML in 3 Lines of Code

  • Versions: 1,695
  • Dependent Packages: 11
  • Dependent Repositories: 111
  • Downloads: 288,485 Last month
  • Docker Downloads: 2,478,793
Rankings
Stargazers count: 0.4%
Dependent packages count: 0.6%
Docker downloads count: 0.7%
Average: 0.9%
Downloads: 1.1%
Dependent repos count: 1.4%
Forks count: 1.5%
Maintainers (3)
Last synced: about 1 year ago
pypi.org: autogluon.tabular

Fast and Accurate ML in 3 Lines of Code

  • Versions: 1,752
  • Dependent Packages: 7
  • Dependent Repositories: 44
  • Downloads: 214,299 Last month
  • Docker Downloads: 128
Rankings
Stargazers count: 0.4%
Dependent packages count: 0.9%
Downloads: 1.2%
Average: 1.2%
Forks count: 1.5%
Dependent repos count: 2.2%
Maintainers (3)
Last synced: 6 months ago
pypi.org: autogluon.common

Fast and Accurate ML in 3 Lines of Code

  • Versions: 1,343
  • Dependent Packages: 11
  • Dependent Repositories: 23
  • Downloads: 200,720 Last month
  • Docker Downloads: 2,478,753
Rankings
Stargazers count: 0.4%
Docker downloads count: 0.7%
Dependent packages count: 0.8%
Downloads: 1.1%
Average: 1.3%
Forks count: 1.5%
Dependent repos count: 3.1%
Maintainers (1)
Last synced: 6 months ago
pypi.org: autogluon.features

Fast and Accurate ML in 3 Lines of Code

  • Versions: 1,582
  • Dependent Packages: 7
  • Dependent Repositories: 39
  • Downloads: 282,836 Last month
  • Docker Downloads: 128
Rankings
Stargazers count: 0.4%
Dependent packages count: 0.9%
Downloads: 1.2%
Average: 1.3%
Forks count: 1.5%
Dependent repos count: 2.4%
Maintainers (3)
Last synced: about 1 year ago
pypi.org: autogluon

Fast and Accurate ML in 3 Lines of Code

  • Versions: 1,886
  • Dependent Packages: 8
  • Dependent Repositories: 59
  • Downloads: 270,487 Last month
  • Docker Downloads: 177
Rankings
Stargazers count: 0.4%
Downloads: 1.5%
Forks count: 1.5%
Average: 1.7%
Dependent repos count: 1.9%
Dependent packages count: 2.1%
Docker downloads count: 2.9%
Maintainers (2)
Last synced: about 1 year ago
pypi.org: autogluon.multimodal

Fast and Accurate ML in 3 Lines of Code

  • Versions: 1,136
  • Dependent Packages: 3
  • Dependent Repositories: 15
  • Downloads: 143,027 Last month
  • Docker Downloads: 128
Rankings
Stargazers count: 0.4%
Forks count: 1.5%
Dependent packages count: 1.6%
Downloads: 1.6%
Average: 1.8%
Dependent repos count: 3.8%
Maintainers (1)
Last synced: 6 months ago
pypi.org: autogluon.vision

AutoML for Image, Text, and Tabular Data

  • Versions: 846
  • Dependent Packages: 1
  • Dependent Repositories: 18
  • Downloads: 27,646 Last month
Rankings
Stargazers count: 0.4%
Forks count: 1.5%
Average: 2.5%
Downloads: 2.6%
Dependent repos count: 3.4%
Dependent packages count: 4.8%
Maintainers (1)
Last synced: 6 months ago
pypi.org: autogluon.text

AutoML for Image, Text, and Tabular Data

  • Versions: 837
  • Dependent Packages: 1
  • Dependent Repositories: 17
  • Downloads: 29,481 Last month
Rankings
Stargazers count: 0.4%
Forks count: 1.5%
Average: 2.5%
Downloads: 2.6%
Dependent repos count: 3.5%
Dependent packages count: 4.8%
Maintainers (1)
Last synced: 6 months ago
pypi.org: autogluon.timeseries

Fast and Accurate ML in 3 Lines of Code

  • Versions: 1,129
  • Dependent Packages: 0
  • Dependent Repositories: 4
  • Downloads: 204,946 Last month
  • Docker Downloads: 128
Rankings
Stargazers count: 0.4%
Forks count: 1.5%
Downloads: 1.5%
Docker downloads count: 3.1%
Average: 4.0%
Dependent repos count: 7.5%
Dependent packages count: 10.1%
Maintainers (1)
Last synced: 6 months ago
proxy.golang.org: github.com/autogluon/autogluon
  • Versions: 37
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 6.5%
Average: 6.7%
Dependent repos count: 7.0%
Last synced: 6 months ago
pypi.org: autogluon.eda

AutoML for Image, Text, and Tabular Data

  • Versions: 189
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 2,145 Last month
Rankings
Stargazers count: 0.4%
Forks count: 1.5%
Downloads: 4.8%
Dependent packages count: 6.6%
Average: 8.8%
Dependent repos count: 30.6%
Maintainers (1)
Last synced: 6 months ago
pypi.org: aglite-test.common

AutoML for Image, Text, and Tabular Data

  • Versions: 8
  • Dependent Packages: 2
  • Dependent Repositories: 0
  • Downloads: 67 Last month
Rankings
Stargazers count: 0.4%
Forks count: 1.5%
Dependent packages count: 1.9%
Average: 10.1%
Downloads: 16.2%
Dependent repos count: 30.6%
Maintainers (1)
Last synced: 6 months ago
pypi.org: aglite-test.core

AutoML for Image, Text, and Tabular Data

  • Versions: 8
  • Dependent Packages: 2
  • Dependent Repositories: 0
  • Downloads: 66 Last month
Rankings
Stargazers count: 0.4%
Forks count: 1.5%
Dependent packages count: 1.9%
Average: 10.3%
Downloads: 17.2%
Dependent repos count: 30.6%
Maintainers (1)
Last synced: 6 months ago
pypi.org: aglite-test.features

AutoML for Image, Text, and Tabular Data

  • Versions: 8
  • Dependent Packages: 2
  • Dependent Repositories: 0
  • Downloads: 57 Last month
Rankings
Stargazers count: 0.4%
Forks count: 1.5%
Dependent packages count: 1.9%
Average: 10.3%
Downloads: 17.3%
Dependent repos count: 30.6%
Maintainers (1)
Last synced: 6 months ago
pypi.org: aglite-test.tabular

AutoML for Image, Text, and Tabular Data

  • Versions: 8
  • Dependent Packages: 1
  • Dependent Repositories: 0
  • Downloads: 50 Last month
Rankings
Stargazers count: 0.4%
Forks count: 1.5%
Dependent packages count: 2.9%
Average: 10.6%
Downloads: 17.7%
Dependent repos count: 30.6%
Maintainers (1)
Last synced: 6 months ago
pypi.org: aglite-test

AutoML for Image, Text, and Tabular Data

  • Versions: 8
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 56 Last month
Rankings
Stargazers count: 0.4%
Forks count: 1.5%
Dependent packages count: 6.6%
Average: 11.6%
Downloads: 18.6%
Dependent repos count: 30.6%
Maintainers (1)
Last synced: 6 months ago
pypi.org: autogluon-tonyhu-test.features

AutoML for Image, Text, and Tabular Data

  • Versions: 5
  • Dependent Packages: 3
  • Dependent Repositories: 0
  • Downloads: 779 Last month
Rankings
Dependent packages count: 9.8%
Average: 37.1%
Dependent repos count: 64.5%
Maintainers (1)
Last synced: about 1 year ago
pypi.org: autogluon-tonyhu-test.multimodal

AutoML for Image, Text, and Tabular Data

  • Versions: 5
  • Dependent Packages: 1
  • Dependent Repositories: 0
  • Downloads: 788 Last month
Rankings
Dependent packages count: 9.8%
Average: 37.1%
Dependent repos count: 64.5%
Maintainers (1)
Last synced: about 1 year ago
pypi.org: autogluon-tonyhu-test.core

AutoML for Image, Text, and Tabular Data

  • Versions: 5
  • Dependent Packages: 1
  • Dependent Repositories: 0
  • Downloads: 781 Last month
Rankings
Dependent packages count: 9.8%
Average: 37.1%
Dependent repos count: 64.5%
Maintainers (1)
Last synced: about 1 year ago
pypi.org: autogluon-tonyhu-test

AutoML for Image, Text, and Tabular Data

  • Versions: 4
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 748 Last month
Rankings
Dependent packages count: 9.8%
Average: 37.1%
Dependent repos count: 64.5%
Maintainers (1)
Last synced: about 1 year ago
pypi.org: autogluon-tonyhu-test.common

AutoML for Image, Text, and Tabular Data

  • Versions: 5
  • Dependent Packages: 4
  • Dependent Repositories: 0
  • Downloads: 741 Last month
Rankings
Dependent packages count: 9.8%
Average: 37.1%
Dependent repos count: 64.5%
Maintainers (1)
Last synced: about 1 year ago
pypi.org: autogluon-tonyhu-test.tabular

AutoML for Image, Text, and Tabular Data

  • Versions: 5
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 747 Last month
Rankings
Dependent packages count: 9.8%
Average: 37.1%
Dependent repos count: 64.5%
Maintainers (1)
Last synced: about 1 year ago
pypi.org: autogluon-tonyhu-test.timeseries

AutoML for Image, Text, and Tabular Data

  • Versions: 5
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 743 Last month
Rankings
Dependent packages count: 9.8%
Average: 37.1%
Dependent repos count: 64.5%
Maintainers (1)
Last synced: about 1 year ago