https://github.com/serapieum-of-alex/statista

Extreme value statistics

https://github.com/serapieum-of-alex/statista

Science Score: 26.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (8.9%) to scientific vocabulary

Keywords

extreme-value-statistics fit-models gev mom statistical-analysis statistical-distributions

Keywords from Contributors

spacy-extension profiling optical standards transformers packaging genomics mesh sequences projection
Last synced: 6 months ago · JSON representation

Repository

Extreme value statistics

Basic Info
Statistics
  • Stars: 2
  • Watchers: 0
  • Forks: 0
  • Open Issues: 19
  • Releases: 17
Topics
extreme-value-statistics fit-models gev mom statistical-analysis statistical-distributions
Created over 3 years ago · Last pushed 7 months ago
Metadata Files
Readme Contributing License Code of conduct

README.md

Statista - Advanced Statistical Analysis Package

Python Versions License: GPL v3 Docs codecov pre-commit GitHub last commit GitHub issues GitHub stars GitHub forks

Overview

Statista is a comprehensive Python package for statistical analysis, focusing on probability distributions, extreme value analysis, and sensitivity analysis. It provides robust tools for researchers, engineers, and data scientists working with statistical models, particularly in hydrology, climate science, and risk assessment.

Current release info

| Name | Downloads | Version | Platforms | | --- |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| --- | --- | | Conda Recipe | Conda Downloads Downloads Downloads Downloads PyPI - Downloads | Conda Version PyPI version Anaconda-Server Badge | Conda Platforms Join the chat at https://gitter.im/Hapi-Nile/Hapi |

conda-forge feedstock

Conda-forge feedstock

Installation

Conda (Recommended)

bash conda install -c conda-forge statista

PyPI

bash pip install statista

Development Version

bash pip install git+https://github.com/Serapieum-of-alex/statista

Main Features

Statistical Distributions

  • Probability Distributions: GEV, Gumbel, Normal, Exponential, and more
  • Parameter Estimation Methods: Maximum Likelihood (ML), L-moments, Method of Moments (MOM)
  • Goodness-of-fit Tests: Kolmogorov-Smirnov, Chi-square
  • Truncated Distributions: Focus analysis on values above a threshold

Extreme Value Analysis

  • Return Period Calculation: Estimate extreme events for different return periods
  • Confidence Intervals: Calculate confidence bounds using various methods
  • Plotting Positions: Weibull, Gringorten, and other empirical distribution functions

Sensitivity Analysis

  • One-at-a-time (OAT): Analyze parameter sensitivity individually
  • Sobol Visualization: Visualize parameter interactions and importance

Statistical Tools

  • Descriptive Statistics: Comprehensive statistical descriptors
  • Time Series Analysis: Auto-correlation and other time series tools
  • Visualization: Publication-quality plots for statistical analysis

Quick Start

Basic Usage

```python import pandas as pd from statista.distributions import Distributions

Load your time series data

data = pd.readcsv("yourdata.csv", header=None)[0].tolist()

Create a distribution object (e.g., Gumbel)

dist = Distributions("Gumbel", data)

Fit the distribution using maximum likelihood

params = dist.fit_model(method="mle") print(params)

Calculate and plot the PDF and CDF

pdf = dist.pdf(plotfigure=True) cdf, _, _ = dist.cdf(plotfigure=True)

Perform goodness-of-fit tests

kstest = dist.ks() chi2test = dist.chisquare()

Create a probability plot with confidence intervals

fig, ax = dist.plot() ```

Extreme Value Analysis

```python from statista.distributions import GEV, PlottingPosition

Create a GEV distribution

gev_dist = Distributions("GEV", data)

Fit using L-moments

params = gevdist.fitmodel(method="lmoments")

Calculate non-exceedance probabilities

cdf_weibul = PlottingPosition.weibul(data)

Calculate confidence intervals

lowerbound, upperbound, fig, ax = gevdist.confidenceinterval(plot_figure=True) ```

For more examples and detailed documentation, visit Statista Documentation

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the GPL-3.0 License - see the LICENSE file for details.

Citation

If you use Statista in your research, please cite it as:

Farrag, M. (2023). Statista: A Python package for statistical analysis, extreme value analysis, and sensitivity analysis. https://github.com/Serapieum-of-alex/statista

BibTeX: bibtex @software{statista2023, author = {Farrag, Mostafa}, title = {Statista: A Python package for statistical analysis, extreme value analysis, and sensitivity analysis}, url = {https://github.com/Serapieum-of-alex/statista}, year = {2023} }

Owner

  • Name: Serapeum
  • Login: Serapieum-of-alex
  • Kind: organization
  • Location: Germany

GitHub Events

Total
  • Create event: 13
  • Issues event: 11
  • Release event: 4
  • Delete event: 11
  • Issue comment event: 6
  • Push event: 76
  • Pull request review comment event: 16
  • Pull request review event: 13
  • Pull request event: 20
Last Year
  • Create event: 13
  • Issues event: 11
  • Release event: 4
  • Delete event: 11
  • Issue comment event: 6
  • Push event: 76
  • Pull request review comment event: 16
  • Pull request review event: 13
  • Pull request event: 20

Committers

Last synced: about 2 years ago

All Time
  • Total Commits: 201
  • Total Committers: 3
  • Avg Commits per committer: 67.0
  • Development Distribution Score (DDS): 0.114
Past Year
  • Commits: 159
  • Committers: 2
  • Avg Commits per committer: 79.5
  • Development Distribution Score (DDS): 0.119
Top Committers
Name Email Commits
Mostafa Farrag m****g@g****m 178
dependabot[bot] 4****] 19
GitHub Action a****n@g****m 4
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: over 1 year ago

All Time
  • Total issues: 13
  • Total pull requests: 85
  • Average time to close issues: about 1 month
  • Average time to close pull requests: about 1 month
  • Total issue authors: 1
  • Total pull request authors: 2
  • Average comments per issue: 0.0
  • Average comments per pull request: 1.35
  • Merged pull requests: 29
  • Bot issues: 0
  • Bot pull requests: 73
Past Year
  • Issues: 12
  • Pull requests: 15
  • Average time to close issues: 28 minutes
  • Average time to close pull requests: about 1 month
  • Issue authors: 1
  • Pull request authors: 2
  • Average comments per issue: 0.0
  • Average comments per pull request: 0.8
  • Merged pull requests: 3
  • Bot issues: 0
  • Bot pull requests: 10
Top Authors
Issue Authors
  • MAfarrag (23)
Pull Request Authors
  • dependabot[bot] (72)
  • MAfarrag (26)
Top Labels
Issue Labels
enhancement (3) bug (2) ci (2)
Pull Request Labels
dependencies (73) python (5) ci (1) codex (1) enhancement (1) documentation (1)

Packages

  • Total packages: 2
  • Total downloads:
    • pypi 342 last-month
  • Total dependent packages: 5
    (may contain duplicates)
  • Total dependent repositories: 3
    (may contain duplicates)
  • Total versions: 24
  • Total maintainers: 1
pypi.org: statista

statistics package

  • Versions: 17
  • Dependent Packages: 3
  • Dependent Repositories: 2
  • Downloads: 342 Last month
Rankings
Dependent packages count: 3.2%
Dependent repos count: 11.5%
Average: 20.5%
Stargazers count: 27.8%
Forks count: 29.8%
Downloads: 30.3%
Maintainers (1)
Last synced: 6 months ago
conda-forge.org: statista

Statistical Package.

  • Versions: 7
  • Dependent Packages: 2
  • Dependent Repositories: 1
Rankings
Dependent packages count: 19.6%
Dependent repos count: 24.3%
Average: 44.3%
Forks count: 66.0%
Stargazers count: 67.5%
Last synced: 6 months ago

Dependencies

docs/environment.yml conda
  • numpy 1.20.*
  • numpydoc 1.1.0
  • pandas
  • pip >=22.3.1
  • python >=3.9,<3.11
  • typing-extensions 3.10.*
environment.yml pypi
.github/workflows/conda-deployment.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
  • conda-incubator/setup-miniconda v2 composite
.github/workflows/github-release.yml actions
  • actions/checkout v2 composite
.github/workflows/pypi-deployment.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
  • codecov/codecov-action v3 composite
.github/workflows/pypi-release.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
requirements-dev.txt pypi
  • black >=23.11.0 development
  • darglint >=1.8.1 development
  • flake8 >=6.1.0 development
  • flake8-bandit >=4.1.1 development
  • flake8-bugbear >=23.9.16 development
  • flake8-docstrings >=1.7.0 development
  • flake8-rst-docstrings >=0.3.0 development
  • pep8-naming >=0.13.3 development
  • pre-commit >=3.5.0 development
  • pre-commit-hooks >=4.5.0 development
  • pytest >=7.4.3 development
  • pytest-cov >=4.1.0 development
  • reorder-python-imports >=3.12.0 development
requirements.txt pypi
  • loguru >=0.6.0
  • matplotlib >=3.6.3
  • numpy ==1.25.2
  • pandas >=2.1.0
  • pip >=23.2.1
  • scikit-learn >=1.3.2
  • scipy >=1.11.4
setup.py pypi