https://github.com/serapieum-of-alex/statista
Extreme value statistics
Science Score: 26.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (8.9%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
Extreme value statistics
Basic Info
- Host: GitHub
- Owner: Serapieum-of-alex
- License: gpl-3.0
- Language: Python
- Default Branch: main
- Homepage: https://github.com/Serapieum-of-alex/statista
- Size: 13.3 MB
Statistics
- Stars: 2
- Watchers: 0
- Forks: 0
- Open Issues: 19
- Releases: 17
Topics
Metadata Files
README.md
Statista - Advanced Statistical Analysis Package
Overview
Statista is a comprehensive Python package for statistical analysis, focusing on probability distributions, extreme value analysis, and sensitivity analysis. It provides robust tools for researchers, engineers, and data scientists working with statistical models, particularly in hydrology, climate science, and risk assessment.
Current release info
| Name | Downloads | Version | Platforms |
| --- |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| --- | --- |
| |
|
|
|
conda-forge feedstock
Installation
Conda (Recommended)
bash
conda install -c conda-forge statista
PyPI
bash
pip install statista
Development Version
bash
pip install git+https://github.com/Serapieum-of-alex/statista
Main Features
Statistical Distributions
- Probability Distributions: GEV, Gumbel, Normal, Exponential, and more
- Parameter Estimation Methods: Maximum Likelihood (ML), L-moments, Method of Moments (MOM)
- Goodness-of-fit Tests: Kolmogorov-Smirnov, Chi-square
- Truncated Distributions: Focus analysis on values above a threshold
Extreme Value Analysis
- Return Period Calculation: Estimate extreme events for different return periods
- Confidence Intervals: Calculate confidence bounds using various methods
- Plotting Positions: Weibull, Gringorten, and other empirical distribution functions
Sensitivity Analysis
- One-at-a-time (OAT): Analyze parameter sensitivity individually
- Sobol Visualization: Visualize parameter interactions and importance
Statistical Tools
- Descriptive Statistics: Comprehensive statistical descriptors
- Time Series Analysis: Auto-correlation and other time series tools
- Visualization: Publication-quality plots for statistical analysis
Quick Start
Basic Usage
```python import pandas as pd from statista.distributions import Distributions
Load your time series data
data = pd.readcsv("yourdata.csv", header=None)[0].tolist()
Create a distribution object (e.g., Gumbel)
dist = Distributions("Gumbel", data)
Fit the distribution using maximum likelihood
params = dist.fit_model(method="mle") print(params)
Calculate and plot the PDF and CDF
pdf = dist.pdf(plotfigure=True) cdf, _, _ = dist.cdf(plotfigure=True)
Perform goodness-of-fit tests
kstest = dist.ks() chi2test = dist.chisquare()
Create a probability plot with confidence intervals
fig, ax = dist.plot() ```
Extreme Value Analysis
```python from statista.distributions import GEV, PlottingPosition
Create a GEV distribution
gev_dist = Distributions("GEV", data)
Fit using L-moments
params = gevdist.fitmodel(method="lmoments")
Calculate non-exceedance probabilities
cdf_weibul = PlottingPosition.weibul(data)
Calculate confidence intervals
lowerbound, upperbound, fig, ax = gevdist.confidenceinterval(plot_figure=True) ```
For more examples and detailed documentation, visit Statista Documentation
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
This project is licensed under the GPL-3.0 License - see the LICENSE file for details.
Citation
If you use Statista in your research, please cite it as:
Farrag, M. (2023). Statista: A Python package for statistical analysis, extreme value analysis, and sensitivity analysis.
https://github.com/Serapieum-of-alex/statista
BibTeX:
bibtex
@software{statista2023,
author = {Farrag, Mostafa},
title = {Statista: A Python package for statistical analysis, extreme value analysis, and sensitivity analysis},
url = {https://github.com/Serapieum-of-alex/statista},
year = {2023}
}
Owner
- Name: Serapeum
- Login: Serapieum-of-alex
- Kind: organization
- Location: Germany
- Repositories: 10
- Profile: https://github.com/Serapieum-of-alex
GitHub Events
Total
- Create event: 13
- Issues event: 11
- Release event: 4
- Delete event: 11
- Issue comment event: 6
- Push event: 76
- Pull request review comment event: 16
- Pull request review event: 13
- Pull request event: 20
Last Year
- Create event: 13
- Issues event: 11
- Release event: 4
- Delete event: 11
- Issue comment event: 6
- Push event: 76
- Pull request review comment event: 16
- Pull request review event: 13
- Pull request event: 20
Committers
Last synced: about 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| Mostafa Farrag | m****g@g****m | 178 |
| dependabot[bot] | 4****] | 19 |
| GitHub Action | a****n@g****m | 4 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: over 1 year ago
All Time
- Total issues: 13
- Total pull requests: 85
- Average time to close issues: about 1 month
- Average time to close pull requests: about 1 month
- Total issue authors: 1
- Total pull request authors: 2
- Average comments per issue: 0.0
- Average comments per pull request: 1.35
- Merged pull requests: 29
- Bot issues: 0
- Bot pull requests: 73
Past Year
- Issues: 12
- Pull requests: 15
- Average time to close issues: 28 minutes
- Average time to close pull requests: about 1 month
- Issue authors: 1
- Pull request authors: 2
- Average comments per issue: 0.0
- Average comments per pull request: 0.8
- Merged pull requests: 3
- Bot issues: 0
- Bot pull requests: 10
Top Authors
Issue Authors
- MAfarrag (23)
Pull Request Authors
- dependabot[bot] (72)
- MAfarrag (26)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 2
-
Total downloads:
- pypi 342 last-month
-
Total dependent packages: 5
(may contain duplicates) -
Total dependent repositories: 3
(may contain duplicates) - Total versions: 24
- Total maintainers: 1
pypi.org: statista
statistics package
- Homepage: https://github.com/Serapieum-of-alex/statista
- Documentation: https://github.com/Serapieum-of-alex/statista
- License: GPL-3.0-or-later
-
Latest release: 0.6.3
published 7 months ago
Rankings
Maintainers (1)
conda-forge.org: statista
Statistical Package.
- Homepage: https://github.com/Serapieum-of-alex/statista
- License: GPL-3.0-only
-
Latest release: 0.1.6
published over 3 years ago
Rankings
Dependencies
- numpy 1.20.*
- numpydoc 1.1.0
- pandas
- pip >=22.3.1
- python >=3.9,<3.11
- typing-extensions 3.10.*
- actions/checkout v3 composite
- actions/setup-python v4 composite
- conda-incubator/setup-miniconda v2 composite
- actions/checkout v2 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- codecov/codecov-action v3 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- black >=23.11.0 development
- darglint >=1.8.1 development
- flake8 >=6.1.0 development
- flake8-bandit >=4.1.1 development
- flake8-bugbear >=23.9.16 development
- flake8-docstrings >=1.7.0 development
- flake8-rst-docstrings >=0.3.0 development
- pep8-naming >=0.13.3 development
- pre-commit >=3.5.0 development
- pre-commit-hooks >=4.5.0 development
- pytest >=7.4.3 development
- pytest-cov >=4.1.0 development
- reorder-python-imports >=3.12.0 development
- loguru >=0.6.0
- matplotlib >=3.6.3
- numpy ==1.25.2
- pandas >=2.1.0
- pip >=23.2.1
- scikit-learn >=1.3.2
- scipy >=1.11.4