gpvit
[ICLR 2023 Spotlight] GPViT: A High Resolution Non-Hierarchical Vision Transformer with Group Propagation
Science Score: 36.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
✓Academic publication links
Links to: arxiv.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (11.4%) to scientific vocabulary
Keywords
Repository
[ICLR 2023 Spotlight] GPViT: A High Resolution Non-Hierarchical Vision Transformer with Group Propagation
Basic Info
Statistics
- Stars: 100
- Watchers: 4
- Forks: 3
- Open Issues: 2
- Releases: 1
Topics
Metadata Files
README.md
GPViT: A High Resolution Non-Hierarchical Vision Transformer with Group Propagation
This repository contains the official PyTorch implementation of GPViT, a high-resolution non-hierarchical vision transformer architecture designed for high-performing visual recognition, which is introduced in our paper:
Usage
Environment Setup
Our code base is built upon the MM-series toolkits. Specifically, classification is based on MMClassification; object detection is based on MMDetection; and semantic segmentation is based on MMSegmentation. Users can follow the official site of those toolkit to set up their environments. We also provide a sample setting up script as following:
shell
conda create -n gpvit python=3.7 -y
source activate gpvit
pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 -f https://download.pytorch.org/whl/torch_stable.html
pip install -U openmim
mim install mmcv-full==1.4.8
pip install timm
pip install lmdb # for ImageNet experiments
pip install -v -e .
cd downstream/mmdetection # set up object detection and instance segmentation
pip install -v -e .
cd ../mmsegmentation # set up semantic segmentation
pip install -v -e .
Data Preparation
Please follow MMClassification, MMDetection and MMSegmentation to set up the ImageNet, COCO and ADE20K datasets. For ImageNet experiment, we convert the dataset to LMDB format to accelerate training and testing. For example, you can convert you own dataset by running:
shell
python tools/dataset_tools/create_lmdb_dataset.py \
--train-img-dir data/imagenet/train \
--train-out data/imagenet/imagenet_lmdb/train \
--val-img-dir data/imagenet/val \
--val-out data/imagenet/imagenet_lmdb/val
After setting up, the datasets file structure should be as follows:
GPViT
|-- data
| |-- imagenet
| | |-- imagenet_lmdb
| | | |-- train
| | | | |-- data.mdb
| | | | |__ lock.mdb
| | | |-- val
| | | | |-- data.mdb
| | | | |__ lock.mdb
| | |-- meta
| | | |__ ...
|-- downstream
| |-- mmsegmentation
| | |-- data
| | | |-- ade
| | | | |-- ADEChallengeData2016
| | | | | |-- annotations
| | | | | | |__ ...
| | | | | |-- images
| | | | | | |__ ...
| | | | | |-- objectInfo150.txt
| | | | | |__ sceneCategories.txt
| | |__ ...
| |-- mmdetection
| | |-- data
| | | |-- coco
| | | | |-- train2017
| | | | | |-- ...
| | | | |-- val2017
| | | | | |-- ...
| | | | |-- annotations
| | | | | |-- instances_train2017.json
| | | | | |-- instances_val2017.json
| | | | | |__ ...
| | |__ ...
|__ ...
ImageNet Classification
Training GPViT
```shell
Example: Training GPViT-L1 model
zsh tool/disttrain.sh configs/gpvit/gpvitl1.py 16 ```
Testing GPViT
```shell
Example: Testing GPViT-L1 model
zsh tool/disttest.sh configs/gpvit/gpvitl1.py workdirs/gpvitl1/epoch_300.pth 16 --metrics accuracy ```
COCO Object Detection and Instance Segmentation
Run cd downstream/mmdetection first.
Training GPViT based Mask R-CNN
```shell
Example: Training GPViT-L1 models with 1x and 3x+MS schedules
zsh tools/disttrain.sh configs/gpvit/maskrcnn/gpvitl1maskrcnn1x.py 16 zsh tools/disttrain.sh configs/gpvit/maskrcnn/gpvitl1maskrcnn3x.py 16 ```
Training GPViT based RetinaNet
```shell
Example: Training GPViT-L1 models with 1x and 3x+MS schedules
zsh tools/disttrain.sh configs/gpvit/retinanet/gpvitl1retinanet1x.py 16 zsh tools/disttrain.sh configs/gpvit/retinanet/gpvitl1retinanet3x.py 16 ```
Testing GPViT based Mask R-CNN
```shell
Example: Testing GPViT-L1 Mask R-CNN 1x model
zsh tools/disttest.sh configs/gpvit/maskrcnn/gpvitl1maskrcnn1x.py workdirs/gpvitl1maskrcnn1x/epoch12.pth 16 --eval bbox segm ```
Testing GPViT based RetinaNet
```shell
Example: Testing GPViT-L1 RetinaNet 1x model
zsh tools/disttest.sh configs/gpvit/retinanet/gpvitl1retinanet1x.py workdirs/gpvitl1retinanet1x/epoch_12.pth 16 --eval bbox ```
ADE20K Semantic Segmentation
Run cd downstream/mmsegmentation first.
Training GPViT based semantic segmentation models
```shell
Example: Training GPViT-L1 based SegFormer and UperNet models
zsh tools/disttrain.sh configs/gpvit/gpvitl1segformer.py 16 zsh tools/disttrain.sh configs/gpvit/gpvitl1upernet.py 16 ```
Testing GPViT based semantic segmentation models
```shell
Example: Testing GPViT-L1 based SegFormer and UperNet models
zsh tools/disttest.sh configs/gpvit/gpvitl1segformer.py workdirs/gpvitl1segformer/iter160000.pth 16 --eval mIoU zsh tools/disttest.sh configs/gpvit/gpvitl1upernet.py workdirs/gpvitl1upernet/iter160000.pth 16 --eval mIoU ```
Benchmark results
ImageNet-1k Classification
| Model | #Params (M) | Top-1 Acc | Top-5 Acc | Config | Model | |:--------:|:-----------:|:---------:|:---------:|:----------:|:------------------------------------------------------------------------------------------------:| | GPViT-L1 | 9.3 | 80.5 | 95.4 | config | model | | GPViT-L2 | 23.8 | 83.4 | 96.6 | config | model | | GPViT-L3 | 36.2 | 84.1 | 96.9 | config | model | | GPViT-L4 | 75.4 | 84.3 | 96.9 | config | model |
COCO Mask R-CNN 1x Schedule
| Model | #Params (M) | AP Box | AP Mask | Config | Model | |:--------:|:-----------:|:------:|:-------:|:----------:|:---------:| | GPViT-L1 | 33 | 48.1 | 42.7 | config | model | | GPViT-L2 | 50 | 49.9 | 43.9 | config | model | | GPViT-L3 | 64 | 50.4 | 44.4 | config | model | | GPViT-L4 | 109 | 51.0 | 45.0 | config | model |
COCO Mask R-CNN 3x+MS Schedule
| Model | #Params (M) | AP Box | AP Mask | Config | Model | |:--------:|:-----------:|:------:|:-------:|:----------:|:---------:| | GPViT-L1 | 33 | 50.2 | 44.3 | config | model | | GPViT-L2 | 50 | 51.4 | 45.1 | config | model | | GPViT-L3 | 64 | 51.6 | 45.2 | config | model | | GPViT-L4 | 109 | 52.1 | 45.7 | config | model |
COCO RetinaNet 1x Schedule
| Model | #Params (M) | AP Box | Config | Model | |:--------:|:-----------:|:------:|:----------:|:---------:| | GPViT-L1 | 21 | 45.8 | config | model | | GPViT-L2 | 37 | 48.0 | config | model | | GPViT-L3 | 52 | 48.3 | config | model | | GPViT-L4 | 96 | 48.7 | config | model |
COCO RetinaNet 3x+MS Schedule
| Model | #Params (M) | AP Box | Config | Model | |:--------:|:-----------:|:------:|:----------:|:---------:| | GPViT-L1 | 21 | 48.1 | config | model | | GPViT-L2 | 37 | 49.0 | config | model | | GPViT-L3 | 52 | 49.4 | config | model | | GPViT-L4 | 96 | 49.8 | config | model |
ADE20K UperNet
| Model | #Params (M) | mIoU | Config | Model | |:--------:|:-----------:|:----:|:----------:|:---------:| | GPViT-L1 | 37 | 49.1 | config | model | | GPViT-L2 | 53 | 50.2 | config | model | | GPViT-L3 | 66 | 51.7 | config | model | | GPViT-L4 | 107 | 52.5 | config | model |
ADE20K SegFormer
| Model | #Params (M) | mIoU | Config | Model | |:--------:|:-----------:|:----:|:----------:|:---------:| | GPViT-L1 | 9 | 46.9 | config | model | | GPViT-L2 | 24 | 49.2 | config | model | | GPViT-L3 | 36 | 50.8 | config | model | | GPViT-L4 | 76 | 51.3 | config | model |
Citation
@InProceedings{yang2023gpvit,
title={{GPViT: A High Resolution Non-Hierarchical Vision Transformer with Group Propagation}},
author={Chenhongyi Yang and Jiarui Xu and Shalini De Mello and Elliot J. Crowley and Xiaolong Wang},
journal={ICLR}
year={2023},
}
Owner
- Name: Chenhongyi Yang
- Login: ChenhongyiYang
- Kind: user
- Location: Zurich, Switzerland
- Company: Meta
- Website: chenhongyiyang.com
- Repositories: 4
- Profile: https://github.com/ChenhongyiYang
Research Scientist at Meta Reality Labs
GitHub Events
Total
- Watch event: 5
Last Year
- Watch event: 5
Packages
- Total packages: 2
- Total downloads: unknown
-
Total dependent packages: 0
(may contain duplicates) -
Total dependent repositories: 0
(may contain duplicates) - Total versions: 2
proxy.golang.org: github.com/chenhongyiyang/gpvit
- Documentation: https://pkg.go.dev/github.com/chenhongyiyang/gpvit#section-documentation
- License: apache-2.0
-
Latest release: v0.0.1
published about 3 years ago
Rankings
proxy.golang.org: github.com/ChenhongyiYang/GPViT
- Documentation: https://pkg.go.dev/github.com/ChenhongyiYang/GPViT#section-documentation
- License: apache-2.0
-
Latest release: v0.0.1
published about 3 years ago
Rankings
Dependencies
- albumentations >=0.3.2
- cython *
- numpy *
- docutils ==0.16.0
- myst-parser *
- sphinx ==4.0.2
- sphinx-copybutton *
- sphinx_markdown_tables *
- sphinx_rtd_theme ==0.5.2
- mmcv-full >=1.3.17
- cityscapesscripts *
- imagecorruptions *
- scipy *
- sklearn *
- timm *
- mmcv *
- torch *
- torchvision *
- matplotlib *
- numpy *
- pycocotools *
- six *
- terminaltables *
- asynctest * test
- codecov * test
- flake8 * test
- interrogate * test
- isort ==4.3.21 test
- kwarray * test
- onnx ==1.7.0 test
- onnxruntime >=1.8.0 test
- protobuf <=3.20.1 test
- pytest * test
- ubelt * test
- xdoctest >=0.10.0 test
- yapf * test
- docutils ==0.16.0
- myst-parser *
- sphinx ==4.0.2
- sphinx_copybutton *
- sphinx_markdown_tables *
- mmcls >=0.20.1
- mmcv-full >=1.4.4,<=1.5.0
- cityscapesscripts *
- mmcv *
- prettytable *
- torch *
- torchvision *
- matplotlib *
- mmcls >=0.20.1
- numpy *
- packaging *
- prettytable *
- codecov * test
- flake8 * test
- interrogate * test
- pytest * test
- xdoctest >=0.10.0 test
- yapf * test
- docutils ==0.17.1
- myst-parser *
- pytorch_sphinx_theme *
- sphinx ==4.5.0
- sphinx-copybutton *
- sphinx_markdown_tables *
- einops >=0.6.0
- mmcv-full >=1.4.2,<1.9.0
- albumentations >=0.3.2
- colorama *
- requests *
- rich *
- scipy *
- mmcv >=1.4.2
- torch *
- torchvision *
- einops >=0.6.0
- matplotlib >=3.1.0
- numpy *
- packaging *
- codecov * test
- flake8 * test
- interrogate * test
- isort ==4.3.21 test
- mmdet * test
- pytest * test
- xdoctest >=0.10.0 test
- yapf * test