https://github.com/Techtonique/techtonique-apis

High level Python functions for interacting with Techtonique forecasting API

https://github.com/Techtonique/techtonique-apis

Science Score: 26.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (9.0%) to scientific vocabulary

Keywords

api forecasting machine-learning time-series
Last synced: 5 months ago · JSON representation

Repository

High level Python functions for interacting with Techtonique forecasting API

Basic Info
Statistics
  • Stars: 1
  • Watchers: 1
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
api forecasting machine-learning time-series
Created about 3 years ago · Last pushed 8 months ago
Metadata Files
Readme Changelog License

README.md

PyPI PyPI - License Downloads

techtonique_apis

High level Python functions for interacting with Techtonique APIs

png

Installation

bash pip install techtonique_apis

Usage

There are 100 free API calls in the free tier/months.

```python from techtonique_apis import TechtoniqueAPI

api = TechtoniqueAPI()

Example 1: Forecasting

forecastresult = api.forecasting( filepath="/Users/t/Documents/datasets/timeseries/univariate/a10.csv", basemodel="RidgeCV", nhiddenfeatures=5, lags=25, typepi="kde", replications=10, h=5 ) print("Forecasting result:", forecastresult)

Example 2: Machine Learning Regression

regressionresult = api.mlregression( filepath="/Users/t/Documents/datasets/tabular/regression/mtcars2.csv", basemodel="ElasticNet", nhiddenfeatures=5, returnpi=True ) print("Regression result:", regression_result)

Example 3: GBDT Classification

gbdtclassificationresult = api.gbdtclassification( filepath="/Users/t/Documents/datasets/tabular/classification/irisdataset2.csv", modeltype="lightgbm" ) print("GBDT Classification result:", gbdtclassificationresult)

Example 4: Reserving

reservingresult = api.reserving( filepath="/Users/t/Documents/datasets/tabular/triangle/raa.csv", method="chainladder" ) print("Reserving result:", reserving_result)

Example 5: Survival Analysis

survivalresult = api.survivalcurve( filepath="/Users/t/Documents/datasets/tabular/survival/kidney.csv", method="km", patientid=123 ) print("Survival curve result:", survival_result)

Example 6: Scenarios

scenariosresult = api.simulatescenario( model="GBM", n=10, frequency="quarterly", x0=100, horizon=5, theta1=0, theta2=0.5, theta3=0.5, ) print("Scenarios result:", scenarios_result) ```

License

MIT

Owner

  • Name: Techtonique
  • Login: Techtonique
  • Kind: organization

tech, stats, machine learning, computer simulation, numerical optimization

GitHub Events

Total
  • Push event: 10
Last Year
  • Push event: 10