https://github.com/awslabs/gluonts
Probabilistic time series modeling in Python
Science Score: 46.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
✓Academic publication links
Links to: arxiv.org -
✓Committers with academic emails
7 of 116 committers (6.0%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (16.0%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
Probabilistic time series modeling in Python
Basic Info
- Host: GitHub
- Owner: awslabs
- License: apache-2.0
- Language: Python
- Default Branch: dev
- Homepage: https://ts.gluon.ai
- Size: 13.9 MB
Statistics
- Stars: 4,982
- Watchers: 77
- Forks: 791
- Open Issues: 444
- Releases: 111
Topics
Metadata Files
README.md
GluonTS - Probabilistic Time Series Modeling in Python
📢 BREAKING NEWS: We released Chronos, a suite of pretrained models for zero-shot time series forecasting. Chronos can generate accurate probabilistic predictions for new time series not seen during training. Check it out here!
GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models, based on PyTorch and MXNet.
Installation
GluonTS requires Python 3.7 or newer, and the easiest way to install it is via
pip:
```bash
install with support for torch models
pip install "gluonts[torch]"
install with support for mxnet models
pip install "gluonts[mxnet]" ```
See the documentation for more info on how GluonTS can be installed.
Simple Example
To illustrate how to use GluonTS, we train a DeepAR-model and make predictions using the airpassengers dataset. The dataset consists of a single time series of monthly passenger numbers between 1949 and 1960. We train the model on the first nine years and make predictions for the remaining three years.
```py import pandas as pd import matplotlib.pyplot as plt
from gluonts.dataset.pandas import PandasDataset from gluonts.dataset.split import split from gluonts.torch import DeepAREstimator
Load data from a CSV file into a PandasDataset
df = pd.readcsv( "https://raw.githubusercontent.com/AileenNielsen/" "TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv", indexcol=0, parse_dates=True, ) dataset = PandasDataset(df, target="#Passengers")
Split the data for training and testing
trainingdata, testgen = split(dataset, offset=-36) testdata = testgen.generateinstances(predictionlength=12, windows=3)
Train the model and make predictions
model = DeepAREstimator( predictionlength=12, freq="M", trainerkwargs={"maxepochs": 5} ).train(trainingdata)
forecasts = list(model.predict(test_data.input))
Plot predictions
plt.plot(df["1954":], color="black") for forecast in forecasts: forecast.plot() plt.legend(["True values"], loc="upper left", fontsize="xx-large") plt.show() ```
![[train-test]](https://ts.gluon.ai/static/README/forecasts.png)
Note, the forecasts are displayed in terms of a probability distribution and the shaded areas represent the 50% and 90% prediction intervals.
Contributing
If you wish to contribute to the project, please refer to our contribution guidelines.
Citing
If you use GluonTS in a scientific publication, we encourage you to add the following references to the related papers, in addition to any model-specific references that are relevant for your work:
bibtex
@article{gluonts_jmlr,
author = {Alexander Alexandrov and Konstantinos Benidis and Michael Bohlke-Schneider
and Valentin Flunkert and Jan Gasthaus and Tim Januschowski and Danielle C. Maddix
and Syama Rangapuram and David Salinas and Jasper Schulz and Lorenzo Stella and
Ali Caner Türkmen and Yuyang Wang},
title = {{GluonTS: Probabilistic and Neural Time Series Modeling in Python}},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {116},
pages = {1-6},
url = {http://jmlr.org/papers/v21/19-820.html}
}
bibtex
@article{gluonts_arxiv,
author = {Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and
Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C.
and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and
Türkmen, A. C. and Wang, Y.},
title = {{GluonTS: Probabilistic Time Series Modeling in Python}},
journal = {arXiv preprint arXiv:1906.05264},
year = {2019}
}
Links
Documentation
References
- JMLR MLOSS Paper
- ArXiv Paper
- Collected Papers from the group behind GluonTS: a bibliography.
Tutorials and Workshops
Owner
- Name: Amazon Web Services - Labs
- Login: awslabs
- Kind: organization
- Location: Seattle, WA
- Website: http://amazon.com/aws/
- Repositories: 914
- Profile: https://github.com/awslabs
AWS Labs
GitHub Events
Total
- Create event: 7
- Issues event: 18
- Release event: 4
- Watch event: 389
- Delete event: 1
- Issue comment event: 25
- Push event: 12
- Pull request review comment event: 12
- Pull request review event: 25
- Pull request event: 31
- Fork event: 42
Last Year
- Create event: 7
- Issues event: 18
- Release event: 4
- Watch event: 389
- Delete event: 1
- Issue comment event: 25
- Push event: 12
- Pull request review comment event: 12
- Pull request review event: 25
- Pull request event: 31
- Fork event: 42
Committers
Last synced: 9 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Jasper | s****e@a****e | 406 |
| Lorenzo Stella | s****o@a****m | 379 |
| Kashif Rasul | k****l@g****m | 54 |
| Syama Sundar Rangapuram | r****r@g****m | 43 |
| Alexander Alexandrov | a****e@a****m | 40 |
| Valentin Flunkert | v****l | 39 |
| Danielle Robinson | d****x@g****m | 33 |
| Abdul Fatir | A****s@g****m | 32 |
| Konstantinos Benidis | b****k@g****m | 25 |
| Aaron Spieler | 2****r | 25 |
| Pedro Mercado | 3****o | 24 |
| Jan Gasthaus | g****s@a****m | 21 |
| Oleksandr Shchur | s****o@a****m | 21 |
| Leonardo Araneda Freccero | a****g | 18 |
| zoolhasson | 4****n | 17 |
| Pascal | 6****n | 16 |
| Caner Turkmen | t****c@g****m | 12 |
| David Salinas | g****o | 12 |
| Michael Bohlke-Schneider | m****3@g****m | 10 |
| Bernie Wang | y****g@a****m | 10 |
| Eduard | e****3@g****t | 10 |
| Nils Kiele | n****e@a****e | 9 |
| RSNirwan | r****n@g****m | 9 |
| Oliver Borchert | o****e@a****m | 9 |
| Stephan Rabanser | r****s@a****m | 8 |
| yx1215 | 3****5 | 8 |
| Shubham Kapoor | s****r | 8 |
| Sheng Zha | s****a | 7 |
| Elena Ehrlich | 7****h | 7 |
| tim | 3****i | 6 |
| and 86 more... | ||
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 170
- Total pull requests: 327
- Average time to close issues: about 1 month
- Average time to close pull requests: 13 days
- Total issue authors: 113
- Total pull request authors: 38
- Average comments per issue: 2.52
- Average comments per pull request: 1.05
- Merged pull requests: 268
- Bot issues: 0
- Bot pull requests: 6
Past Year
- Issues: 20
- Pull requests: 25
- Average time to close issues: 18 days
- Average time to close pull requests: about 11 hours
- Issue authors: 16
- Pull request authors: 6
- Average comments per issue: 0.6
- Average comments per pull request: 0.36
- Merged pull requests: 14
- Bot issues: 0
- Bot pull requests: 3
Top Authors
Issue Authors
- jaheba (12)
- lostella (10)
- shchur (7)
- moghadas76 (7)
- ArianKhorasani (5)
- Serendipity31 (5)
- satyrmipt (3)
- 300LiterPropofol (2)
- LiPingYen (2)
- hanlaoshi (2)
- abdulfatir (2)
- baniasbaabe (2)
- pablovicente (2)
- PaulRabich (2)
- supersaiyajin7 (2)
Pull Request Authors
- lostella (154)
- jaheba (58)
- shchur (29)
- abdulfatir (17)
- melopeo (16)
- rshyamsundar (15)
- Borda (15)
- kashif (10)
- dependabot[bot] (7)
- leica2023 (7)
- moghadas76 (3)
- mcbaron (2)
- sebasmos (2)
- pantanurag555 (2)
- ddelange (2)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 3
-
Total downloads:
- pypi 680,459 last-month
- Total docker downloads: 1,058
-
Total dependent packages: 18
(may contain duplicates) -
Total dependent repositories: 77
(may contain duplicates) - Total versions: 220
- Total maintainers: 3
pypi.org: gluonts
Probabilistic time series modeling in Python.
- Homepage: https://github.com/awslabs/gluonts/
- Documentation: https://ts.gluon.ai/stable/
- License: Apache License 2.0
-
Latest release: 0.16.2
published 8 months ago
Rankings
proxy.golang.org: github.com/awslabs/gluonts
- Documentation: https://pkg.go.dev/github.com/awslabs/gluonts#section-documentation
- License: apache-2.0
-
Latest release: v0.16.2
published 8 months ago
Rankings
anaconda.org: gluonts
GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models, based on PyTorch and MXNet.
- Homepage: https://ts.gluon.ai/stable/
- License: Apache-2.0
-
Latest release: 0.16.0
published 11 months ago
Rankings
Dependencies
- actions/checkout v3 composite
- github/codeql-action/analyze v2 composite
- github/codeql-action/autobuild v2 composite
- github/codeql-action/init v2 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- aws-actions/configure-aws-credentials v2 composite
- extractions/setup-just v1 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v4 composite
- actions/setup-python v4 composite
- pypa/gh-action-pypi-publish release/v1 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- extractions/setup-just v1 composite
- actions/setup-python v4 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- r-lib/actions/setup-r v2 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- python 3.7 build
- python 3.8.12-buster build
- pyright 1.1.206 development
- pyright ^1.1.206 development
- pyarrow *
- black *
- click *
- docutils <=0.16
- furo ==2022.6.4.1
- holidays *
- ipykernel *
- ipython *
- m2r2 *
- matplotlib *
- myst-parser *
- nbconvert *
- nbsphinx *
- notedown *
- optuna *
- orjson *
- pytest-runner *
- recommonmark *
- sphinx *
- numba *
- scikit-learn *
- autogluon ==0.2.0
- hierarchicalforecast *
- statsforecast *
- statsmodels *
- prophet *
- rpy2 *
- fsspec *
- s3fs *
- sagemaker *
- flask *
- waitress *
- statsforecast *
- mxnet *
- numpy <1.24
- protobuf *
- pytorch-lightning >=1.5,<3
- scipy *
- torch >=1.9,<3
- lightgbm >=2.3.1
- scikit-garden >=0.1.2
- scikit-learn >=0.22,<2
- xgboost >=0.90,<2
- flaky * test
- holidays * test
- matplotlib * test
- orjson * test
- pandas >=1.1 test
- pytest >=6.0 test
- pytest-cov ==2.6. test
- pytest-timeout * test
- pytest-xdist * test
- requests * test
- ujson * test
- numpy *
- pandas >=1.0,<3
- pydantic *
- toolz *
- tqdm *
- typing-extensions *
- numpy *
- pytorchts ==0.2.0
- tensorboard *
- torch >=1.5.0
- matplotlib ==3.3.2
- numpy ==1.22.0
- pandas ==1.1.5
- scikit-learn ==0.23.2
- scipy ==1.10.0
- tensorboard ==2.3.0
- torch ==1.13.1
- hierarchicalforecast * test
- statsforecast * test
- statsmodels * test
- prophet * test
- xgboost * test
- statsforecast * test
- mxnet * test
- sklearn * test
- autogluon.tabular * test
- s3fs * test
- sagemaker * test
- flask * test
- requests * test
- waitress * test
- torch * test