https://github.com/awslabs/gluonts

Probabilistic time series modeling in Python

https://github.com/awslabs/gluonts

Science Score: 46.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Committers with academic emails
    7 of 116 committers (6.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (16.0%) to scientific vocabulary

Keywords

artificial-intelligence aws data-science deep-learning forecasting machine-learning mxnet neural-networks pytorch sagemaker time-series time-series-forecasting time-series-prediction timeseries torch

Keywords from Contributors

hyperparameter-optimization automated-machine-learning automl gluon tabular-data ensemble-learning transfer-learning autogluon structured-data transformers
Last synced: 5 months ago · JSON representation

Repository

Probabilistic time series modeling in Python

Basic Info
  • Host: GitHub
  • Owner: awslabs
  • License: apache-2.0
  • Language: Python
  • Default Branch: dev
  • Homepage: https://ts.gluon.ai
  • Size: 13.9 MB
Statistics
  • Stars: 4,982
  • Watchers: 77
  • Forks: 791
  • Open Issues: 444
  • Releases: 111
Topics
artificial-intelligence aws data-science deep-learning forecasting machine-learning mxnet neural-networks pytorch sagemaker time-series time-series-forecasting time-series-prediction timeseries torch
Created almost 7 years ago · Last pushed 6 months ago
Metadata Files
Readme Contributing License Code of conduct

README.md

GluonTS - Probabilistic Time Series Modeling in Python

PyPI GitHub Static Static PyPI Downloads

📢 BREAKING NEWS: We released Chronos, a suite of pretrained models for zero-shot time series forecasting. Chronos can generate accurate probabilistic predictions for new time series not seen during training. Check it out here!

GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models, based on PyTorch and MXNet.

Installation

GluonTS requires Python 3.7 or newer, and the easiest way to install it is via pip:

```bash

install with support for torch models

pip install "gluonts[torch]"

install with support for mxnet models

pip install "gluonts[mxnet]" ```

See the documentation for more info on how GluonTS can be installed.

Simple Example

To illustrate how to use GluonTS, we train a DeepAR-model and make predictions using the airpassengers dataset. The dataset consists of a single time series of monthly passenger numbers between 1949 and 1960. We train the model on the first nine years and make predictions for the remaining three years.

```py import pandas as pd import matplotlib.pyplot as plt

from gluonts.dataset.pandas import PandasDataset from gluonts.dataset.split import split from gluonts.torch import DeepAREstimator

Load data from a CSV file into a PandasDataset

df = pd.readcsv( "https://raw.githubusercontent.com/AileenNielsen/" "TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv", indexcol=0, parse_dates=True, ) dataset = PandasDataset(df, target="#Passengers")

Split the data for training and testing

trainingdata, testgen = split(dataset, offset=-36) testdata = testgen.generateinstances(predictionlength=12, windows=3)

Train the model and make predictions

model = DeepAREstimator( predictionlength=12, freq="M", trainerkwargs={"maxepochs": 5} ).train(trainingdata)

forecasts = list(model.predict(test_data.input))

Plot predictions

plt.plot(df["1954":], color="black") for forecast in forecasts: forecast.plot() plt.legend(["True values"], loc="upper left", fontsize="xx-large") plt.show() ```

[train-test]

Note, the forecasts are displayed in terms of a probability distribution and the shaded areas represent the 50% and 90% prediction intervals.

Contributing

If you wish to contribute to the project, please refer to our contribution guidelines.

Citing

If you use GluonTS in a scientific publication, we encourage you to add the following references to the related papers, in addition to any model-specific references that are relevant for your work:

bibtex @article{gluonts_jmlr, author = {Alexander Alexandrov and Konstantinos Benidis and Michael Bohlke-Schneider and Valentin Flunkert and Jan Gasthaus and Tim Januschowski and Danielle C. Maddix and Syama Rangapuram and David Salinas and Jasper Schulz and Lorenzo Stella and Ali Caner Türkmen and Yuyang Wang}, title = {{GluonTS: Probabilistic and Neural Time Series Modeling in Python}}, journal = {Journal of Machine Learning Research}, year = {2020}, volume = {21}, number = {116}, pages = {1-6}, url = {http://jmlr.org/papers/v21/19-820.html} }

bibtex @article{gluonts_arxiv, author = {Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C. and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and Türkmen, A. C. and Wang, Y.}, title = {{GluonTS: Probabilistic Time Series Modeling in Python}}, journal = {arXiv preprint arXiv:1906.05264}, year = {2019} }

Links

Documentation

References

Tutorials and Workshops

Owner

  • Name: Amazon Web Services - Labs
  • Login: awslabs
  • Kind: organization
  • Location: Seattle, WA

AWS Labs

GitHub Events

Total
  • Create event: 7
  • Issues event: 18
  • Release event: 4
  • Watch event: 389
  • Delete event: 1
  • Issue comment event: 25
  • Push event: 12
  • Pull request review comment event: 12
  • Pull request review event: 25
  • Pull request event: 31
  • Fork event: 42
Last Year
  • Create event: 7
  • Issues event: 18
  • Release event: 4
  • Watch event: 389
  • Delete event: 1
  • Issue comment event: 25
  • Push event: 12
  • Pull request review comment event: 12
  • Pull request review event: 25
  • Pull request event: 31
  • Fork event: 42

Committers

Last synced: 9 months ago

All Time
  • Total Commits: 1,481
  • Total Committers: 116
  • Avg Commits per committer: 12.767
  • Development Distribution Score (DDS): 0.726
Past Year
  • Commits: 18
  • Committers: 6
  • Avg Commits per committer: 3.0
  • Development Distribution Score (DDS): 0.5
Top Committers
Name Email Commits
Jasper s****e@a****e 406
Lorenzo Stella s****o@a****m 379
Kashif Rasul k****l@g****m 54
Syama Sundar Rangapuram r****r@g****m 43
Alexander Alexandrov a****e@a****m 40
Valentin Flunkert v****l 39
Danielle Robinson d****x@g****m 33
Abdul Fatir A****s@g****m 32
Konstantinos Benidis b****k@g****m 25
Aaron Spieler 2****r 25
Pedro Mercado 3****o 24
Jan Gasthaus g****s@a****m 21
Oleksandr Shchur s****o@a****m 21
Leonardo Araneda Freccero a****g 18
zoolhasson 4****n 17
Pascal 6****n 16
Caner Turkmen t****c@g****m 12
David Salinas g****o 12
Michael Bohlke-Schneider m****3@g****m 10
Bernie Wang y****g@a****m 10
Eduard e****3@g****t 10
Nils Kiele n****e@a****e 9
RSNirwan r****n@g****m 9
Oliver Borchert o****e@a****m 9
Stephan Rabanser r****s@a****m 8
yx1215 3****5 8
Shubham Kapoor s****r 8
Sheng Zha s****a 7
Elena Ehrlich 7****h 7
tim 3****i 6
and 86 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 170
  • Total pull requests: 327
  • Average time to close issues: about 1 month
  • Average time to close pull requests: 13 days
  • Total issue authors: 113
  • Total pull request authors: 38
  • Average comments per issue: 2.52
  • Average comments per pull request: 1.05
  • Merged pull requests: 268
  • Bot issues: 0
  • Bot pull requests: 6
Past Year
  • Issues: 20
  • Pull requests: 25
  • Average time to close issues: 18 days
  • Average time to close pull requests: about 11 hours
  • Issue authors: 16
  • Pull request authors: 6
  • Average comments per issue: 0.6
  • Average comments per pull request: 0.36
  • Merged pull requests: 14
  • Bot issues: 0
  • Bot pull requests: 3
Top Authors
Issue Authors
  • jaheba (12)
  • lostella (10)
  • shchur (7)
  • moghadas76 (7)
  • ArianKhorasani (5)
  • Serendipity31 (5)
  • satyrmipt (3)
  • 300LiterPropofol (2)
  • LiPingYen (2)
  • hanlaoshi (2)
  • abdulfatir (2)
  • baniasbaabe (2)
  • pablovicente (2)
  • PaulRabich (2)
  • supersaiyajin7 (2)
Pull Request Authors
  • lostella (154)
  • jaheba (58)
  • shchur (29)
  • abdulfatir (17)
  • melopeo (16)
  • rshyamsundar (15)
  • Borda (15)
  • kashif (10)
  • dependabot[bot] (7)
  • leica2023 (7)
  • moghadas76 (3)
  • mcbaron (2)
  • sebasmos (2)
  • pantanurag555 (2)
  • ddelange (2)
Top Labels
Issue Labels
bug (78) enhancement (48) question (22) discussion (9) torch (5) documentation (3) API change (3) good first issue (3) dependency (2) datasets (2) pending v0.14.x backport (1) tests (1) RFC (1) model accuracy (1) regression (1) refactoring (1) multivariate (1) mxnet (1)
Pull Request Labels
backport (67) enhancement (47) bug fix (32) new feature (25) dependency (22) BREAKING (21) documentation (19) torch (19) models (16) CI (12) pr:docs-build-notebook (12) tests (10) datasets (9) plotting (7) pending v0.15.x backport (6) pr:test-r (5) pending v0.14.x backport (5) pending v0.16.x backport (4) dev setup (4) python (3) dependencies (3) mxnet (3) security fix (2) pending v0.12.x backport (2) pending v0.11.x backport (2) other change (2) pending v0.13.x backport (1) RFC (1) performance improvement (1) API change (1)

Packages

  • Total packages: 3
  • Total downloads:
    • pypi 680,459 last-month
  • Total docker downloads: 1,058
  • Total dependent packages: 18
    (may contain duplicates)
  • Total dependent repositories: 77
    (may contain duplicates)
  • Total versions: 220
  • Total maintainers: 3
pypi.org: gluonts

Probabilistic time series modeling in Python.

  • Versions: 111
  • Dependent Packages: 18
  • Dependent Repositories: 77
  • Downloads: 680,459 Last month
  • Docker Downloads: 1,058
Rankings
Dependent packages count: 0.6%
Downloads: 0.8%
Stargazers count: 1.2%
Average: 1.3%
Forks count: 1.6%
Dependent repos count: 1.7%
Docker downloads count: 1.7%
Maintainers (3)
Last synced: 6 months ago
proxy.golang.org: github.com/awslabs/gluonts
  • Versions: 104
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 5.4%
Average: 5.6%
Dependent repos count: 5.8%
Last synced: 6 months ago
anaconda.org: gluonts

GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models, based on PyTorch and MXNet.

  • Versions: 5
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 39.8%
Average: 48.7%
Dependent repos count: 57.7%
Last synced: 6 months ago

Dependencies

.github/workflows/codeql.yml actions
  • actions/checkout v3 composite
  • github/codeql-action/analyze v2 composite
  • github/codeql-action/autobuild v2 composite
  • github/codeql-action/init v2 composite
.github/workflows/docs.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
  • aws-actions/configure-aws-credentials v2 composite
  • extractions/setup-just v1 composite
.github/workflows/doctests.yaml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/flake8.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/mxnet_nightly.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/pypi.yml actions
  • actions/checkout v4 composite
  • actions/setup-python v4 composite
  • pypa/gh-action-pypi-publish release/v1 composite
.github/workflows/style_type_checks.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
  • extractions/setup-just v1 composite
.github/workflows/test_release_unix_nightly.yml actions
  • actions/setup-python v4 composite
.github/workflows/test_release_win32_nightly.yml actions
  • actions/setup-python v4 composite
.github/workflows/tests-nixtla.yaml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/tests-nursery.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/tests-prophet.yaml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/tests-r.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
  • r-lib/actions/setup-r v2 composite
.github/workflows/tests-torch.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/tests-xgboost.yaml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/tests.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
examples/dockerfiles/Dockerfile docker
  • python 3.7 build
src/gluonts/nursery/tsbench/Dockerfile docker
  • python 3.8.12-buster build
src/gluonts/nursery/tsbench/package-lock.json npm
  • pyright 1.1.206 development
src/gluonts/nursery/tsbench/package.json npm
  • pyright ^1.1.206 development
pyproject.toml pypi
requirements/requirements-arrow.txt pypi
  • pyarrow *
requirements/requirements-docs.txt pypi
  • black *
  • click *
  • docutils <=0.16
  • furo ==2022.6.4.1
  • holidays *
  • ipykernel *
  • ipython *
  • m2r2 *
  • matplotlib *
  • myst-parser *
  • nbconvert *
  • nbsphinx *
  • notedown *
  • optuna *
  • orjson *
  • pytest-runner *
  • recommonmark *
  • sphinx *
requirements/requirements-extras-anomaly-evaluation.txt pypi
  • numba *
  • scikit-learn *
requirements/requirements-extras-autogluon.txt pypi
  • autogluon ==0.2.0
requirements/requirements-extras-cpflows.txt pypi
requirements/requirements-extras-hierarchicalforecast.txt pypi
  • hierarchicalforecast *
  • statsforecast *
requirements/requirements-extras-m-competitions.txt pypi
  • statsmodels *
requirements/requirements-extras-prophet.txt pypi
  • prophet *
requirements/requirements-extras-r.txt pypi
  • rpy2 *
requirements/requirements-extras-sagemaker-sdk.txt pypi
  • fsspec *
  • s3fs *
  • sagemaker *
requirements/requirements-extras-shell.txt pypi
  • flask *
  • waitress *
requirements/requirements-extras-statsforecast.txt pypi
  • statsforecast *
requirements/requirements-mxnet.txt pypi
  • mxnet *
  • numpy <1.24
requirements/requirements-pytorch.txt pypi
  • protobuf *
  • pytorch-lightning >=1.5,<3
  • scipy *
  • torch >=1.9,<3
requirements/requirements-rotbaum-extra-methods.txt pypi
  • lightgbm >=2.3.1
  • scikit-garden >=0.1.2
requirements/requirements-rotbaum.txt pypi
  • scikit-learn >=0.22,<2
  • xgboost >=0.90,<2
requirements/requirements-test.txt pypi
  • flaky * test
  • holidays * test
  • matplotlib * test
  • orjson * test
  • pandas >=1.1 test
  • pytest >=6.0 test
  • pytest-cov ==2.6. test
  • pytest-timeout * test
  • pytest-xdist * test
  • requests * test
  • ujson * test
requirements/requirements.txt pypi
  • numpy *
  • pandas >=1.0,<3
  • pydantic *
  • toolz *
  • tqdm *
  • typing-extensions *
setup.py pypi
src/gluonts/nursery/SCott/requirements.txt pypi
  • numpy *
  • pytorchts ==0.2.0
  • tensorboard *
  • torch >=1.5.0
src/gluonts/nursery/daf/requirements.txt pypi
  • matplotlib ==3.3.2
  • numpy ==1.22.0
  • pandas ==1.1.5
  • scikit-learn ==0.23.2
  • scipy ==1.10.0
  • tensorboard ==2.3.0
  • torch ==1.13.1
src/gluonts/nursery/few_shot_prediction/pyproject.toml pypi
src/gluonts/nursery/tsbench/pyproject.toml pypi
test/ext/hierarchicalforecast/require-packages.txt pypi
  • hierarchicalforecast * test
  • statsforecast * test
test/ext/naive_2/require-packages.txt pypi
  • statsmodels * test
test/ext/prophet/require-packages.txt pypi
  • prophet * test
test/ext/rotbaum/require-packages.txt pypi
  • xgboost * test
test/ext/statsforecast/require-packages.txt pypi
  • statsforecast * test
test/mx/require-packages.txt pypi
  • mxnet * test
test/nursery/anomaly_detection/supervised_metrics/require-packages.txt pypi
  • sklearn * test
test/nursery/autogluon_tabular/require-packages.txt pypi
  • autogluon.tabular * test
test/nursery/sagemaker_sdk/require-packages.txt pypi
  • s3fs * test
  • sagemaker * test
test/shell/require-packages.txt pypi
  • flask * test
  • requests * test
  • waitress * test
test/torch/require-packages.txt pypi
  • torch * test