Recent Releases of https://github.com/cool-japan/scirs

https://github.com/cool-japan/scirs - SciRS2 0.1.0 Alpha-6 Release

SciRS2 0.1.0 Alpha-5 Release

Full Changelog: https://github.com/cool-japan/scirs/compare/v0.1.0-alpha.4...v0.1.0-alpha.6

- Rust
Published by cool-japan 8 months ago

https://github.com/cool-japan/scirs - SciRS2 0.1.0 Alpha-5 Release

Full Changelog: https://github.com/cool-japan/scirs/compare/v0.1.0-alpha.4...v0.1.0-alpha.5

- Rust
Published by cool-japan 8 months ago

https://github.com/cool-japan/scirs - SciRS2 0.1.0 Alpha-4 Release

Full Changelog: https://github.com/cool-japan/scirs/compare/v0.1.0-alpha.3...v0.1.0-alpha.4

- Rust
Published by cool-japan 9 months ago

https://github.com/cool-japan/scirs - SciRS2 0.1.0 Alpha- Release

Full Changelog: https://github.com/cool-japan/scirs/compare/v0.1.0-alpha.2...v0.1.0-alpha.3

- Rust
Published by cool-japan 9 months ago

https://github.com/cool-japan/scirs - SciRS2 0.1.0 Alpha-2 Release

SciRS2 0.1.0 Alpha-2 Release

Full Changelog: https://github.com/cool-japan/scirs/compare/v0.1.0-alpha...v0.1.0-alpha.2

- Rust
Published by cool-japan 10 months ago

https://github.com/cool-japan/scirs - SciRS2 0.1.0 Alpha Release

# SciRS2 0.1.0-alpha Release

This is the first alpha release of the SciRS2 project, which implements a SciPy-like scientific computing and AI library in Rust. All modules have been published on crates.io.

## Key Features

  • 24 Specialized Modules: Covering various scientific computing domains including linear algebra, statistics, signal processing, and more
  • Leveraging Rust's Strengths: Memory safety, parallel processing, and zero-cost abstractions
  • SciPy Compatibility: Familiar APIs in Rust
  • High-Performance Implementation: Optimizations including SIMD, multi-threading, and caching

## Published Modules

### Core Modules - scirs2-core: Core utilities and common functionality - scirs2-linalg: Linear algebra operations - scirs2-stats: Statistical distributions and functions - scirs2-integrate: Numerical integration - scirs2-interpolate: Interpolation algorithms - scirs2-optimize: Optimization algorithms - scirs2-fft: Fast Fourier Transform - scirs2-special: Special functions - scirs2-signal: Signal processing - scirs2-sparse: Sparse matrix operations - scirs2-spatial: Spatial algorithms - scirs2-cluster: Clustering algorithms - scirs2-transform: Data transformation - scirs2-metrics: ML evaluation metrics

### Preview Modules - scirs2-ndimage: N-dimensional image processing - scirs2-neural: Neural network building blocks - scirs2-optim: ML optimization algorithms - scirs2-series: Time series analysis - scirs2-text: Text processing - scirs2-io: Input/output utilities - scirs2-datasets: Dataset utilities - scirs2-graph: Graph processing - scirs2-vision: Computer vision - scirs2-autograd: Automatic differentiation

### Main Package - scirs2: A Rust port of SciPy with AI/ML extensions

## Usage

Add the required modules to your Cargo.toml:

toml [dependencies] scirs2 = "0.1.0-alpha.1" # Main package scirs2-linalg = "0.1.0-alpha.1" # If using specific modules only

Simple example:

``` use scirs2linalg::basic::matrixmultiply; use scirs2_stats::distributions::normal::Normal; use ndarray::Array2;

// Matrix multiplication let a = Array2::fromshapevec((2, 2), vec![1.0, 2.0, 3.0, 4.0]).unwrap(); let b = Array2::fromshapevec((2, 2), vec![5.0, 6.0, 7.0, 8.0]).unwrap(); let c = matrix_multiply(&a, &b).unwrap();

// Normal distribution let normal = Normal::new(0.0, 1.0).unwrap(); let sample = normal.random_sample(100);

``` Important Notes

This is an alpha release, and the API may undergo breaking changes. We welcome feedback and contributions.

Next Steps

  • Further enhance documentation
  • Build benchmarking suite
  • Compare performance with SciPy
  • Stabilize API and prepare for beta release

Contributing

Bug reports, feature requests, and pull requests are welcome. Please see CONTRIBUTING.md before contributing to this project.

This release marks the v0.1.0-alpha tag. Feel free to adjust the content as needed.

- Rust
Published by cool-japan 10 months ago

https://github.com/cool-japan/scirs - SciRS2 0.1.0 Alpha Release

# SciRS2 0.1.0-alpha Release

This is the first alpha release of the SciRS2 project, which implements a SciPy-like scientific computing and AI library in Rust. All modules have been published on crates.io.

## Key Features

  • 24 Specialized Modules: Covering various scientific computing domains including linear algebra, statistics, signal processing, and more
  • Leveraging Rust's Strengths: Memory safety, parallel processing, and zero-cost abstractions
  • SciPy Compatibility: Familiar APIs in Rust
  • High-Performance Implementation: Optimizations including SIMD, multi-threading, and caching

## Published Modules

### Core Modules - scirs2-core: Core utilities and common functionality - scirs2-linalg: Linear algebra operations - scirs2-stats: Statistical distributions and functions - scirs2-integrate: Numerical integration - scirs2-interpolate: Interpolation algorithms - scirs2-optimize: Optimization algorithms - scirs2-fft: Fast Fourier Transform - scirs2-special: Special functions - scirs2-signal: Signal processing - scirs2-sparse: Sparse matrix operations - scirs2-spatial: Spatial algorithms - scirs2-cluster: Clustering algorithms - scirs2-transform: Data transformation - scirs2-metrics: ML evaluation metrics

### Preview Modules - scirs2-ndimage: N-dimensional image processing - scirs2-neural: Neural network building blocks - scirs2-optim: ML optimization algorithms - scirs2-series: Time series analysis - scirs2-text: Text processing - scirs2-io: Input/output utilities - scirs2-datasets: Dataset utilities - scirs2-graph: Graph processing - scirs2-vision: Computer vision - scirs2-autograd: Automatic differentiation

### Main Package - scirs2: A Rust port of SciPy with AI/ML extensions

## Usage

Add the required modules to your Cargo.toml:

toml [dependencies] scirs2 = "0.1.0-alpha.1" # Main package scirs2-linalg = "0.1.0-alpha.1" # If using specific modules only

Simple example:

``` use scirs2linalg::basic::matrixmultiply; use scirs2_stats::distributions::normal::Normal; use ndarray::Array2;

// Matrix multiplication let a = Array2::fromshapevec((2, 2), vec![1.0, 2.0, 3.0, 4.0]).unwrap(); let b = Array2::fromshapevec((2, 2), vec![5.0, 6.0, 7.0, 8.0]).unwrap(); let c = matrix_multiply(&a, &b).unwrap();

// Normal distribution let normal = Normal::new(0.0, 1.0).unwrap(); let sample = normal.random_sample(100);

``` Important Notes

This is an alpha release, and the API may undergo breaking changes. We welcome feedback and contributions.

Next Steps

  • Further enhance documentation
  • Build benchmarking suite
  • Compare performance with SciPy
  • Stabilize API and prepare for beta release

Contributing

Bug reports, feature requests, and pull requests are welcome. Please see CONTRIBUTING.md before contributing to this project.

This release marks the v0.1.0-alpha tag. Feel free to adjust the content as needed.

- Rust
Published by cool-japan 10 months ago