https://github.com/acaciaman/time-decomp
Time series decomposition plot trend and seasonality
Science Score: 36.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
✓Academic publication links
Links to: mdpi.com -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (6.4%) to scientific vocabulary
Keywords
Repository
Time series decomposition plot trend and seasonality
Basic Info
Statistics
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
- Releases: 14
Topics
Metadata Files
README.md
time-decomp
Time series decomposition plot trend and seasonality
Plot trend and seasonality together in one chart as described at Business Days Time Series Weekly Trend and Seasonality.
Added SARIMAX keew predictions (see sarimaxtest.py testplot_keew())
Example usage from ./Python/tests/keewdecomptest.py
```
create test
test_decomposition.py
import unittest import pandas as pd import numpy as np import matplotlib.pyplot as plt from time_decomp.decomposition import DecompositionSingleton
class TestKeewDecomposition(unittest.TestCase): def setUp(self): self.decomp = DecompositionSingleton()
n = 2000
df = pd.DataFrame({'A': np.random.randint(0,100, size=(n,)), 'B': np.random.randint(0,100, size=(n,))})
lsDays = [pd.Timestamp(2021, 1, 1)]*n
for i in range(n):
# construct time, where iYear-iMonth-i
lsDays[i] = pd.Timestamp( np.random.randint(2021,2025), np.random.randint(1,13) , (i+1) % 28 + 1)
df['Day'] = lsDays
df['Year'] = df['Day'].dt.year
df['Month'] = df['Day'].dt.month
df['KeewMonth'] = df['Day'].apply(self.decomp.get_month_keew)
df['Keew']=(df['Month']-1)*4+df['KeewMonth']
self.decomp.df = df.groupby(['Year', 'Keew']).last().reset_index()
self.decomp.features = ['A', 'B']
self.decomp.decompose_params = {'model': 'additive', 'period':48, 'extrapolate_trend':'freq'}
def test_plot_decomposition(self):
# output df info
print("Starting test_plot_decomposition")
print("DataFrame Info:")
print(self.decomp.df.info())
print("DataFrame Head:")
print("\n%s", self.decomp.df.head())
self.decomp.m_decompose()
self.decomp.plot_decomposition('A', 'Year', range(2021,2025), 'Keew', 'A keew', chart_elements=[self.decomp.ChartElement.TREND, self.decomp.ChartElement.SEASONAL])
plt.show()
```
Added PLOTLY to run from IPython Notebook
``` from plotly.offline import iplot
decomp.mdecompose() fig = decomp.plotdecompositionplotly('A', 'Year', range(2021,2025), 'Keew', 'A keew', chartelements=[ decomp.ChartElement.OBSERVED, decomp.ChartElement.SEASONAL]) iplot(fig) ```
Added trends analysis from EnvironmentalTrends
``` from time_decomp.environmentaltrends import EnvironmentalTrends
Set pandas option to display all columns
pd.setoption('display.maxcolumns', None)
class TestEnvironmentalTrends(unittest.TestCase):
def setUp(self):
self.decomp = EnvironmentalTrends()
self.decomp.features = ['A']
self.decomp.trend_data_params = {'year_col':'Year', 'month_col':'Month' }
self.decomp.trends_params = {'seasons_per_year': 12, 'trend_lengths': [1], 'end_years': [2025]}
def test_m_trends(self):
self.decomp.m_trends()
# output df info
print("Starting test_plot_decomposition")
print("DataFrame Info:")
print(self.decomp.t['A'].info())
print("DataFrame Head:")
print("\n%s", self.decomp.t['A'].head())
```
``` DataFrame Head:
%s Frequency SeasonsPeryear TrendLength TrendEnd TrendPeriod \ 0 Monthly 12 1 2025 Jul 2024 to Jun 2025
ValueCount Minimum Median Average Maximum YearsInPeriod \ 0 12.0 5.0 48.0 50.333333 96.0 1.0
SeasonsInPeriod PercentOfYears PercentOfSeasons KW-pValue Seasonality \ 0 12.0 100.0 100.0 0.443263 Non-seasonal
AppliedSeasonality MK-S MK-Variance MK-pvalue IncreasingLikelihood \ 0 Non-seasonal 8.0 212.666667 0.631222 68.438909
TrendDirection SenSlope LowerSlope UpperSlope
0 Likely increasing 16.5 -384.0 544.8 ```
Owner
- Login: AcaciaMan
- Kind: user
- Repositories: 11
- Profile: https://github.com/AcaciaMan
GitHub Events
Total
- Release event: 4
- Watch event: 1
- Push event: 7
- Create event: 4
Last Year
- Release event: 4
- Watch event: 1
- Push event: 7
- Create event: 4
Issues and Pull Requests
Last synced: 8 months ago
All Time
- Total issues: 0
- Total pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Total issue authors: 0
- Total pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 45 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 10
- Total maintainers: 1
pypi.org: time-decomp
Time series decomposition plot trend and seasonality together
- Homepage: https://github.com/AcaciaMan/time-decomp
- Documentation: https://time-decomp.readthedocs.io/
- License: Apache Software License
-
Latest release: 2.0.1
published 12 months ago