powersddp
A didactic library on dynamic programming techniques applied to the economical dispatch of energy in power systems.
Science Score: 44.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (11.0%) to scientific vocabulary
Keywords
Repository
A didactic library on dynamic programming techniques applied to the economical dispatch of energy in power systems.
Basic Info
Statistics
- Stars: 5
- Watchers: 1
- Forks: 0
- Open Issues: 3
- Releases: 3
Topics
Metadata Files
README.md
Power System Stochastic Dual Dynamic Programming
The main goal of this library is to provide support for studies regarding the optimal dispatch of power systems, majorly comprised of Thermoelectric and Hydroelectric Generators.
Note 1 This is an under development library.
A special thank should be given to professor André Marcato. This project does not intend to substitute the similar library PySDDP.
Note 1 This project is being developed alongside the masters course: Planejamento de Sistemas Elétricos, as part of the masters program in Energy Systems at the Electrical Engineering Graduate Program from the Universidade Federal de Juiz de Fora - Brazil
Note 2 The code will evolve alongside the video lectures provided by professor Marcato at: Curso de Planejamento de Sistemas Elétricos
Installation
pip install powersddp
Example
There are two ways of initializing a Power System. Either by providing a .yml file, or by passing a dictionary as an initialization data. Both are depicted bellow:
Note: When using the file input method (
.ymlformat) check the example of how to declare the parameters.
Initializing a PowerSystem
```Python import powersddp as psddp
system = psddp.PowerSystem(path='system.yml')
print("System Load: {}\n" "Number of HGUs: {}\n" "Number of TGUs: {}".format(system.data['load'], len(system.data['hydrounits']), len(system.data['thermalunits']))) ```
```Python import powersddp as psddp
data = {'load': [50, 50, 50], 'discretizations': 3, 'stages': 3, 'scenarios': 2, 'outagecost': 500, 'hydrounits': [{'name': 'HU1', 'vmax': 100, 'vmin': 20, 'vini': 100, 'prod': 0.95, 'flowmax': 60, 'inflowscenarios': [[23, 16], [19, 14], [15, 11]]}], 'thermalunits': [{'name': 'GT1', 'capacity': 15, 'cost': 10}, {'name': 'GT2', 'capacity': 10, 'cost': 25}]}
PowerSystem = psddp.PowerSystem(data=data)
print("System Load: {}\n" "Number of HGUs: {}\n" "Number of TGUs: {}".format(PowerSystem.data['load'], len(PowerSystem.data['hydrounits']), len(PowerSystem.data['thermalunits']))) ```
Dispatching a PowerSystem
dispatch() accepts the following arguments:
solver : str, optional defaults to 'sdp'- Selects the solver option for the minimization objective function.
scenario : int, optional defaults to 0- Chooses either a specific scenario to investigate (
scenario>1) or all scenarios to evaluate (scenario= 0). Starting from 0 to the number of declared scenarios in thehydro_units['inflow_scenarios']parameter.
- Chooses either a specific scenario to investigate (
verbose : bool, optional defaults to False- Displays the PDDE solution for every stage of the execution. Use with care, solutions of complex systems with too many stages and scenarios might overflow the console.
plot : bool, optional, defaults to False- Displays a sequence of plots showing the future cost function for every stage of the execution.
The following example executes the Power System dispatch using the Unique Linear Programming method for the first scenario (id = 1) and outputs the optimization steps.
```Python import powersddp as psddp
data = {'load': [50, 50, 50], 'discretizations': 3, 'stages': 3, 'scenarios': 2, 'outagecost': 500, 'hydrounits': [{'name': 'HU1', 'vmax': 100, 'vmin': 20, 'vini': 100, 'prod': 0.95, 'flowmax': 60, 'inflowscenarios': [[23, 16], [19, 14], [15, 11]]}], 'thermalunits': [{'name': 'GT1', 'capacity': 15, 'cost': 10}, {'name': 'GT2', 'capacity': 10, 'cost': 25}]}
PowerSystem = psddp.PowerSystem(data=data) operation = PowerSystem.dispatch(solver='ulp', scenario=1, verbose=True)
print(operation)
```
<!-- -->
Owner
- Name: Ettore Aquino
- Login: ettoreaquino
- Kind: user
- Location: São Paulo, Brazil
- Company: Omega Energia
- Website: https://www.omegaenergia.com
- Twitter: ettoreaquino
- Repositories: 2
- Profile: https://github.com/ettoreaquino
Data Engineering Manager @ Omega Energia • Data • Software • Cloud • Energy • Renewables
Citation (CITATION.cff)
cff-version: 0.0.3
message: "If you use this software, please cite it as below."
authors:
-
family-names: Pureza Leonel Bigi de Aquino
given-names: Ettore
-
family-names: Peters Barbosa
given-names: João Pedro
-
family-names: Peters Barbosa
given-names: Pedro Henrique
title: "PPEE_210092: Power System Stochastic Dual Dynamic Programming Library"
version: 0.0.3
date-released: 2021-08-25
url: "https://github.com/ettoreaquino/powersddp"
GitHub Events
Total
Last Year
Committers
Last synced: about 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| Ettore Aquino | e****e@e****m | 21 |
| Jppbrbs | j****s@g****m | 16 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: over 1 year ago
All Time
- Total issues: 10
- Total pull requests: 15
- Average time to close issues: 3 days
- Average time to close pull requests: 1 minute
- Total issue authors: 1
- Total pull request authors: 2
- Average comments per issue: 0.1
- Average comments per pull request: 0.0
- Merged pull requests: 15
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- ettoreaquino (10)
Pull Request Authors
- ettoreaquino (10)
- joaoppeters (5)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 16 last-month
- Total dependent packages: 0
- Total dependent repositories: 1
- Total versions: 3
- Total maintainers: 2
pypi.org: powersddp
A Stochastic Dual Dynamic Programmimg library to solve economical dispach of power systems.
- Homepage: https://github.com/ettoreaquino/powersddp.git
- Documentation: https://powersddp.readthedocs.io/
- License: mit
-
Latest release: 0.0.3
published over 4 years ago
Rankings
Maintainers (2)
Dependencies
- 101 dependencies
- black ^21.7b0 develop
- jupyterlab ^3.1.6 develop
- mypy ^0.910 develop
- pylint ^2.9.6 develop
- pytest ^5.2 develop
- typed-ast ^1.4.3 develop
- types-PyYAML ^5.4.6 develop
- PyYAML ^5.4.1
- cvxopt ^1.2.6
- numpy ^1.21.1
- pandas ^1.3.2
- plotly ^5.2.1
- python ^3.7