https://github.com/pranabdas/suvtools
Python library for analyzing and visualizing SSLS SUV Beamline data.
Science Score: 26.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (13.2%) to scientific vocabulary
Keywords
Repository
Python library for analyzing and visualizing SSLS SUV Beamline data.
Basic Info
- Host: GitHub
- Owner: pranabdas
- License: mit
- Language: Jupyter Notebook
- Default Branch: main
- Homepage: https://pranabdas.github.io/suvtools/
- Size: 7.38 MB
Statistics
- Stars: 1
- Watchers: 0
- Forks: 0
- Open Issues: 1
- Releases: 11
Topics
Metadata Files
README.md
SUV Tools
Visit the project homepage https://pranabdas.github.io/suvtools/
Quick start
Install latest stable release:
console
pip install --upgrade suvtools
Import suvtools into your project:
python
import suvtools as suv
Modules:
suv.load("datafile.txt", scan=None): It will return a two dimensional array with columns for various parameters. If the second argument, i.e., the scan number is not specified, the code will read the last scan from the file.suv.fit_gauss(x, y, a=None, x0=None, sigma=None, xmin=None, xmax=None, num=1000): returns x, Gaussian fitted y values, and prints out relevant parameters.xminandxmaxdetermines the range to fit. Ifxminandxmaxare not provided, whole range is used.numdetermines the number of points returned inx_fitandy_fit.suv.fit_lorentz(x, y, a=None, x0=None, gamma=None, xmin=None, xmax=None, num=1000): returns x, Lorentzian fitted y values, and prints out relevant parameters.xminandxmaxdetermines the range to fit. Ifxminandxmaxare not provided, whole range is used.numdetermines the number of points returned inx_fitandy_fit.suv.save_csv("datafile.txt", csvname=None, scan=None): saves scan to a csv file. The file will be saved in the save directory asdatafilewith namedatafile.csvunlesscsvnameis specified. Like theloadmodule, if the scan number is not specified, it will read the last scan from the file.suv.norm_bg(energy, intensity, x1, x2, x_norm_loc=None): Removes linear background, and normalizes the data. x1, x2 are energy values that determines the slope of the background. By default the normalization done at the tail point of the spectra. It can be changed to other point, enter the corresponding energy value. The intention is to normalize at an energy value away from the peaks/features of interest.suv.lock_peak(data, refdata, x1=None, x2=None, E_col=0, I_col=9, I0_col=4): Locks peak position with respect to the reference data. It locks the maximum of intensity to the same energy; the range of peak search can be specified by inputx1andx2. If no bounds are given, it will find the maximum in the whole data range.suv.calc_area(y, x, x_start=None, x_end=None): Calculates area under the curve for givenxandyvalues.x_startandx_endcan be specified to set the limit of integration region, if not provided whole range is integrated.
See the notebook and documentation for example usage.
Python tests
console
python3 -m unittest discover tests
Owner
- Name: Pranab Das
- Login: pranabdas
- Kind: user
- Location: Singapore
- Website: pranabdas.github.io
- Repositories: 18
- Profile: https://github.com/pranabdas
GitHub Events
Total
- Release event: 3
- Delete event: 1
- Push event: 96
- Pull request event: 3
- Create event: 5
Last Year
- Release event: 3
- Delete event: 1
- Push event: 96
- Pull request event: 3
- Create event: 5
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 1
- Total pull requests: 2
- Average time to close issues: about 13 hours
- Average time to close pull requests: 14 minutes
- Total issue authors: 1
- Total pull request authors: 1
- Average comments per issue: 2.0
- Average comments per pull request: 0.0
- Merged pull requests: 2
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 1
- Average time to close issues: N/A
- Average time to close pull requests: 25 minutes
- Issue authors: 0
- Pull request authors: 1
- Average comments per issue: 0
- Average comments per pull request: 0.0
- Merged pull requests: 1
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- pranabdas (1)
Pull Request Authors
- pranabdas (4)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 24 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 6
- Total maintainers: 1
pypi.org: suvtools
Python library for analyzing and visualizing SSLS SUV Beamline data.
- Homepage: https://pranabdas.github.io/suvtools/
- Documentation: https://pranabdas.github.io/suvtools/docs/
- License: MIT
-
Latest release: 1.1.2
published about 1 year ago
Rankings
Maintainers (1)
Dependencies
- 1127 dependencies
- gh-pages ^3.2.3 development
- @docusaurus/core 2.0.0-rc.1
- @docusaurus/preset-classic 2.0.0-rc.1
- @easyops-cn/docusaurus-search-local ^0.30.1
- @mdx-js/react ^1.6.22
- @svgr/webpack ^5.5.0
- clsx ^1.2.1
- file-loader ^6.2.0
- prism-react-renderer ^1.3.5
- react ^17.0.2
- react-dom ^17.0.2
- rehype-katex ^6.0.2
- remark-math ^3.0.1
- url-loader ^4.1.1
- actions/checkout v4 composite
- actions/setup-node v4 composite
- peaceiris/actions-gh-pages v3 composite
- actions/checkout v4 composite
- actions/setup-python v4 composite
- ubuntu jammy build
- actions/checkout v4 composite
- actions/setup-python v5 composite
- pypa/gh-action-pypi-publish release/v1 composite
- 113 dependencies
- autopep8 ^2.3.1 develop
- jupyterlab ^4.2.5 develop
- matplotlib ^3.9.2
- numpy ^2.0.2
- pandas ^2.2.3
- python ^3.9
- scipy ^1.13.1
- psutil ^6.0.0 tests