https://github.com/hpcaitech/colossalai

Making large AI models cheaper, faster and more accessible

https://github.com/hpcaitech/colossalai

Science Score: 59.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 4 DOI reference(s) in README
  • Academic publication links
    Links to: arxiv.org
  • Committers with academic emails
    9 of 196 committers (4.6%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (12.2%) to scientific vocabulary

Keywords

ai big-model data-parallelism deep-learning distributed-computing foundation-models heterogeneous-training hpc inference large-scale model-parallelism pipeline-parallelism

Keywords from Contributors

transformer jax tensors audio pretrained-models agents autograd mlops vlm speech-recognition
Last synced: 5 months ago · JSON representation

Repository

Making large AI models cheaper, faster and more accessible

Basic Info
  • Host: GitHub
  • Owner: hpcaitech
  • License: apache-2.0
  • Language: Python
  • Default Branch: main
  • Homepage: https://www.colossalai.org
  • Size: 63.3 MB
Statistics
  • Stars: 41,118
  • Watchers: 390
  • Forks: 4,525
  • Open Issues: 475
  • Releases: 50
Topics
ai big-model data-parallelism deep-learning distributed-computing foundation-models heterogeneous-training hpc inference large-scale model-parallelism pipeline-parallelism
Created over 4 years ago · Last pushed 6 months ago
Metadata Files
Readme Changelog Contributing License Codeowners

README.md

Colossal-AI

[![logo](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/colossal-ai_logo_vertical.png)](https://www.colossalai.org/) Colossal-AI: Making large AI models cheaper, faster, and more accessible

Paper | Documentation | Examples | Forum | GPU Cloud Playground | Blog

[![GitHub Repo stars](https://img.shields.io/github/stars/hpcaitech/ColossalAI?style=social)](https://github.com/hpcaitech/ColossalAI/stargazers) [![Build](https://github.com/hpcaitech/ColossalAI/actions/workflows/build_on_schedule.yml/badge.svg)](https://github.com/hpcaitech/ColossalAI/actions/workflows/build_on_schedule.yml) [![Documentation](https://readthedocs.org/projects/colossalai/badge/?version=latest)](https://colossalai.readthedocs.io/en/latest/?badge=latest) [![CodeFactor](https://www.codefactor.io/repository/github/hpcaitech/colossalai/badge)](https://www.codefactor.io/repository/github/hpcaitech/colossalai) [![HuggingFace badge](https://img.shields.io/badge/%F0%9F%A4%97HuggingFace-Join-yellow)](https://huggingface.co/hpcai-tech) [![slack badge](https://img.shields.io/badge/Slack-join-blueviolet?logo=slack&)](https://github.com/hpcaitech/public_assets/tree/main/colossalai/contact/slack) [![WeChat badge](https://img.shields.io/badge/微信-加入-green?logo=wechat&)](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png) | [English](README.md) | [中文](docs/README-zh-Hans.md) |

Get Started with Colossal-AI Without Setup

Access high-end, on-demand compute for your research instantly—no setup needed.

Sign up now and get $10 in credits!

Limited Academic Bonuses:

  • Top up $1,000 and receive 300 credits
  • Top up $500 and receive 100 credits

Latest News

Table of Contents

Why Colossal-AI

Prof. James Demmel (UC Berkeley): Colossal-AI makes training AI models efficient, easy, and scalable.

(back to top)

Features

Colossal-AI provides a collection of parallel components for you. We aim to support you to write your distributed deep learning models just like how you write your model on your laptop. We provide user-friendly tools to kickstart distributed training and inference in a few lines.

(back to top)

Colossal-AI in the Real World

Open-Sora

Open-Sora:Revealing Complete Model Parameters, Training Details, and Everything for Sora-like Video Generation Models [code] [blog] [Model weights] [Demo] [GPU Cloud Playground] [OpenSora Image]

(back to top)

Colossal-LLaMA-2

[GPU Cloud Playground] [LLaMA3 Image]

| Model | Backbone | Tokens Consumed | MMLU (5-shot) | CMMLU (5-shot)| AGIEval (5-shot) | GAOKAO (0-shot) | CEval (5-shot) | | :-----------------------------: | :--------: | :-------------: | :------------------: | :-----------: | :--------------: | :-------------: | :-------------: | | Baichuan-7B | - | 1.2T | 42.32 (42.30) | 44.53 (44.02) | 38.72 | 36.74 | 42.80 | | Baichuan-13B-Base | - | 1.4T | 50.51 (51.60) | 55.73 (55.30) | 47.20 | 51.41 | 53.60 | | Baichuan2-7B-Base | - | 2.6T | 46.97 (54.16) | 57.67 (57.07) | 45.76 | 52.60 | 54.00 | | Baichuan2-13B-Base | - | 2.6T | 54.84 (59.17) | 62.62 (61.97) | 52.08 | 58.25 | 58.10 | | ChatGLM-6B | - | 1.0T | 39.67 (40.63) | 41.17 (-) | 40.10 | 36.53 | 38.90 | | ChatGLM2-6B | - | 1.4T | 44.74 (45.46) | 49.40 (-) | 46.36 | 45.49 | 51.70 | | InternLM-7B | - | 1.6T | 46.70 (51.00) | 52.00 (-) | 44.77 | 61.64 | 52.80 | | Qwen-7B | - | 2.2T | 54.29 (56.70) | 56.03 (58.80) | 52.47 | 56.42 | 59.60 | | Llama-2-7B | - | 2.0T | 44.47 (45.30) | 32.97 (-) | 32.60 | 25.46 | - | | Linly-AI/Chinese-LLaMA-2-7B-hf | Llama-2-7B | 1.0T | 37.43 | 29.92 | 32.00 | 27.57 | - | | wenge-research/yayi-7b-llama2 | Llama-2-7B | - | 38.56 | 31.52 | 30.99 | 25.95 | - | | ziqingyang/chinese-llama-2-7b | Llama-2-7B | - | 33.86 | 34.69 | 34.52 | 25.18 | 34.2 | | TigerResearch/tigerbot-7b-base | Llama-2-7B | 0.3T | 43.73 | 42.04 | 37.64 | 30.61 | - | | LinkSoul/Chinese-Llama-2-7b | Llama-2-7B | - | 48.41 | 38.31 | 38.45 | 27.72 | - | | FlagAlpha/Atom-7B | Llama-2-7B | 0.1T | 49.96 | 41.10 | 39.83 | 33.00 | - | | IDEA-CCNL/Ziya-LLaMA-13B-v1.1 | Llama-13B | 0.11T | 50.25 | 40.99 | 40.04 | 30.54 | - | | Colossal-LLaMA-2-7b-base | Llama-2-7B | 0.0085T | 53.06 | 49.89 | 51.48 | 58.82 | 50.2 | | Colossal-LLaMA-2-13b-base | Llama-2-13B | 0.025T | 56.42 | 61.80 | 54.69 | 69.53 | 60.3 |

ColossalChat

ColossalChat: An open-source solution for cloning ChatGPT with a complete RLHF pipeline. [code] [blog] [demo] [tutorial]

  • Up to 10 times faster for RLHF PPO Stage3 Training

  • Up to 7.73 times faster for single server training and 1.42 times faster for single-GPU inference

  • Up to 10.3x growth in model capacity on one GPU
  • A mini demo training process requires only 1.62GB of GPU memory (any consumer-grade GPU)

  • Increase the capacity of the fine-tuning model by up to 3.7 times on a single GPU
  • Keep at a sufficiently high running speed

(back to top)

AIGC

Acceleration of AIGC (AI-Generated Content) models such as Stable Diffusion v1 and Stable Diffusion v2.

  • Training: Reduce Stable Diffusion memory consumption by up to 5.6x and hardware cost by up to 46x (from A100 to RTX3060).

  • Inference: Reduce inference GPU memory consumption by 2.5x.

(back to top)

Biomedicine

Acceleration of AlphaFold Protein Structure

  • FastFold: Accelerating training and inference on GPU Clusters, faster data processing, inference sequence containing more than 10000 residues.

  • xTrimoMultimer: accelerating structure prediction of protein monomers and multimer by 11x.

(back to top)

Parallel Training Demo

LLaMA3

LLaMA2

  • 70 billion parameter LLaMA2 model training accelerated by 195% [code] [blog]

LLaMA1

  • 65-billion-parameter large model pretraining accelerated by 38% [code] [blog]

MoE

  • Enhanced MoE parallelism, Open-source MoE model training can be 9 times more efficient [code] [blog]

GPT-3

  • Save 50% GPU resources and 10.7% acceleration

GPT-2

  • 11x lower GPU memory consumption, and superlinear scaling efficiency with Tensor Parallelism

  • 24x larger model size on the same hardware
  • over 3x acceleration

    BERT

  • 2x faster training, or 50% longer sequence length

PaLM

OPT

  • Open Pretrained Transformer (OPT), a 175-Billion parameter AI language model released by Meta, which stimulates AI programmers to perform various downstream tasks and application deployments because of public pre-trained model weights.
  • 45% speedup fine-tuning OPT at low cost in lines. [Example] [Online Serving]

Please visit our documentation and examples for more details.

ViT

  • 14x larger batch size, and 5x faster training for Tensor Parallelism = 64

Recommendation System Models

  • Cached Embedding, utilize software cache to train larger embedding tables with a smaller GPU memory budget.

(back to top)

Single GPU Training Demo

GPT-2

  • 20x larger model size on the same hardware

  • 120x larger model size on the same hardware (RTX 3080)

PaLM

  • 34x larger model size on the same hardware

(back to top)

Inference

Colossal-Inference

Grok-1

  • 314 Billion Parameter Grok-1 Inference Accelerated by 3.8x, an easy-to-use Python + PyTorch + HuggingFace version for Inference.

[code] [blog] [HuggingFace Grok-1 PyTorch model weights] [ModelScope Grok-1 PyTorch model weights]

SwiftInfer

  • SwiftInfer: Inference performance improved by 46%, open source solution breaks the length limit of LLM for multi-round conversations

(back to top)

Installation

Requirements: - PyTorch >= 2.2 - Python >= 3.7 - CUDA >= 11.0 - NVIDIA GPU Compute Capability >= 7.0 (V100/RTX20 and higher) - Linux OS

If you encounter any problem with installation, you may want to raise an issue in this repository.

Install from PyPI

You can easily install Colossal-AI with the following command. By default, we do not build PyTorch extensions during installation.

bash pip install colossalai

Note: only Linux is supported for now.

However, if you want to build the PyTorch extensions during installation, you can set BUILD_EXT=1.

bash BUILD_EXT=1 pip install colossalai

Otherwise, CUDA kernels will be built during runtime when you actually need them.

We also keep releasing the nightly version to PyPI every week. This allows you to access the unreleased features and bug fixes in the main branch. Installation can be made via

bash pip install colossalai-nightly

Download From Source

The version of Colossal-AI will be in line with the main branch of the repository. Feel free to raise an issue if you encounter any problems. :)

```shell git clone https://github.com/hpcaitech/ColossalAI.git cd ColossalAI

install colossalai

pip install . ```

By default, we do not compile CUDA/C++ kernels. ColossalAI will build them during runtime. If you want to install and enable CUDA kernel fusion (compulsory installation when using fused optimizer):

shell BUILD_EXT=1 pip install .

For Users with CUDA 10.2, you can still build ColossalAI from source. However, you need to manually download the cub library and copy it to the corresponding directory.

```bash

clone the repository

git clone https://github.com/hpcaitech/ColossalAI.git cd ColossalAI

download the cub library

wget https://github.com/NVIDIA/cub/archive/refs/tags/1.8.0.zip unzip 1.8.0.zip cp -r cub-1.8.0/cub/ colossalai/kernel/cuda_native/csrc/kernels/include/

install

BUILD_EXT=1 pip install . ```

(back to top)

Use Docker

Pull from DockerHub

You can directly pull the docker image from our DockerHub page. The image is automatically uploaded upon release.

Build On Your Own

Run the following command to build a docker image from Dockerfile provided.

Building Colossal-AI from scratch requires GPU support, you need to use Nvidia Docker Runtime as the default when doing docker build. More details can be found here. We recommend you install Colossal-AI from our project page directly.

bash cd ColossalAI docker build -t colossalai ./docker

Run the following command to start the docker container in interactive mode.

bash docker run -ti --gpus all --rm --ipc=host colossalai bash

(back to top)

Community

Join the Colossal-AI community on Forum, Slack, and WeChat(微信) to share your suggestions, feedback, and questions with our engineering team.

Contributing

Referring to the successful attempts of BLOOM and Stable Diffusion, any and all developers and partners with computing powers, datasets, models are welcome to join and build the Colossal-AI community, making efforts towards the era of big AI models!

You may contact us or participate in the following ways: 1. Leaving a Star ⭐ to show your like and support. Thanks! 2. Posting an issue, or submitting a PR on GitHub follow the guideline in Contributing 3. Send your official proposal to email contact@hpcaitech.com

Thanks so much to all of our amazing contributors!

(back to top)

CI/CD

We leverage the power of GitHub Actions to automate our development, release and deployment workflows. Please check out this documentation on how the automated workflows are operated.

Cite Us

This project is inspired by some related projects (some by our team and some by other organizations). We would like to credit these amazing projects as listed in the Reference List.

To cite this project, you can use the following BibTeX citation.

@inproceedings{10.1145/3605573.3605613, author = {Li, Shenggui and Liu, Hongxin and Bian, Zhengda and Fang, Jiarui and Huang, Haichen and Liu, Yuliang and Wang, Boxiang and You, Yang}, title = {Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training}, year = {2023}, isbn = {9798400708435}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3605573.3605613}, doi = {10.1145/3605573.3605613}, abstract = {The success of Transformer models has pushed the deep learning model scale to billions of parameters, but the memory limitation of a single GPU has led to an urgent need for training on multi-GPU clusters. However, the best practice for choosing the optimal parallel strategy is still lacking, as it requires domain expertise in both deep learning and parallel computing. The Colossal-AI system addressed the above challenge by introducing a unified interface to scale your sequential code of model training to distributed environments. It supports parallel training methods such as data, pipeline, tensor, and sequence parallelism and is integrated with heterogeneous training and zero redundancy optimizer. Compared to the baseline system, Colossal-AI can achieve up to 2.76 times training speedup on large-scale models.}, booktitle = {Proceedings of the 52nd International Conference on Parallel Processing}, pages = {766–775}, numpages = {10}, keywords = {datasets, gaze detection, text tagging, neural networks}, location = {Salt Lake City, UT, USA}, series = {ICPP '23} }

Colossal-AI has been accepted as official tutorial by top conferences NeurIPS, SC, AAAI, PPoPP, CVPR, ISC, NVIDIA GTC ,etc.

(back to top)

Owner

  • Name: HPC-AI Tech
  • Login: hpcaitech
  • Kind: organization
  • Email: contact@hpcaitech.com

We are a global team to help you train and deploy your AI models

Committers

Last synced: 9 months ago

All Time
  • Total Commits: 3,660
  • Total Committers: 196
  • Avg Commits per committer: 18.673
  • Development Distribution Score (DDS): 0.876
Past Year
  • Commits: 423
  • Committers: 30
  • Avg Commits per committer: 14.1
  • Development Distribution Score (DDS): 0.835
Top Committers
Name Email Commits
Frank Lee s****9@g****m 454
ver217 l****7@g****m 426
Jiarui Fang f****3@g****m 335
YuliangLiu0306 7****6 183
oahzxl x****o@g****m 157
HELSON c****8@g****m 137
binmakeswell b****l@g****m 133
flybird11111 1****2@q****m 108
github-actions[bot] 4****] 89
wangbluo 2****5@q****m 71
hxwang w****0@e****g 68
digger yu d****u@o****m 67
Jianghai 7****1 61
Boyuan Yao 7****0 58
Ziyue Jiang z****7@g****m 55
YeAnbang a****2@o****m 54
Yuanheng Zhao 5****o 52
Baizhou Zhang e****g@p****n 50
Super Daniel 7****u 49
yuehuayingxueluo 8****9@q****m 46
FoolPlayer 4****r 46
アマデウス k****g 45
LuGY 7****u 37
Fazzie-Maqianli 5****y 36
Haze188 h****8@q****m 32
Edenzzzz w****n@w****u 32
GuangyaoZhang x****1@q****m 31
Maruyama_Aya c****1@1****m 29
Tong Li t****8@g****m 29
pre-commit-ci[bot] 6****] 26
and 166 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 85
  • Total pull requests: 364
  • Average time to close issues: 2 months
  • Average time to close pull requests: 10 days
  • Total issue authors: 70
  • Total pull request authors: 38
  • Average comments per issue: 1.73
  • Average comments per pull request: 0.4
  • Merged pull requests: 235
  • Bot issues: 0
  • Bot pull requests: 3
Past Year
  • Issues: 62
  • Pull requests: 269
  • Average time to close issues: 18 days
  • Average time to close pull requests: 8 days
  • Issue authors: 52
  • Pull request authors: 22
  • Average comments per issue: 0.79
  • Average comments per pull request: 0.33
  • Merged pull requests: 164
  • Bot issues: 0
  • Bot pull requests: 3
Top Authors
Issue Authors
  • ericxsun (16)
  • GuangyaoZhang (13)
  • wangbluo (8)
  • CjhHa1 (6)
  • BurkeHulk (6)
  • insujang (5)
  • wxthu (5)
  • SeekPoint (5)
  • ver217 (5)
  • flybird11111 (5)
  • happynaruto (4)
  • duanjunwen (4)
  • Edenzzzz (4)
  • hiprince (3)
  • 447428054 (3)
Pull Request Authors
  • ver217 (171)
  • flybird11111 (125)
  • wangbluo (81)
  • YeAnbang (69)
  • TongLi3701 (60)
  • yuanheng-zhao (47)
  • FrankLeeeee (45)
  • duanjunwen (44)
  • Edenzzzz (43)
  • botbw (38)
  • yuehuayingxueluo (36)
  • binmakeswell (28)
  • Hz188 (27)
  • Courtesy-Xs (26)
  • CjhHa1 (22)
Top Labels
Issue Labels
bug (127) enhancement (43) documentation (10) shardformer (7) invalid (1) stale (1) pipeline-parallel (1) colossal-inference (1)
Pull Request Labels
bug (33) enhancement (30) release (16) shardformer (10) colossal-inference (10) DevOps (9) documentation (9) example (8) gemini (5) API (4) testing (2) colossal-llama2 (1) diffusion (1) compatibility (1)

Packages

  • Total packages: 5
  • Total downloads:
    • pypi 24,735 last-month
  • Total docker downloads: 1,431,248
  • Total dependent packages: 9
    (may contain duplicates)
  • Total dependent repositories: 63
    (may contain duplicates)
  • Total versions: 263
  • Total maintainers: 2
pypi.org: colossalai

An integrated large-scale model training system with efficient parallelization techniques

  • Versions: 39
  • Dependent Packages: 9
  • Dependent Repositories: 63
  • Downloads: 24,336 Last month
  • Docker Downloads: 1,431,248
Rankings
Docker downloads count: 0.8%
Dependent packages count: 1.2%
Average: 1.7%
Dependent repos count: 1.9%
Downloads: 2.8%
Maintainers (1)
Last synced: 6 months ago
proxy.golang.org: github.com/hpcaitech/colossalai
  • Versions: 46
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 9.0%
Average: 9.6%
Dependent repos count: 10.2%
Last synced: 6 months ago
proxy.golang.org: github.com/hpcaitech/ColossalAI
  • Versions: 46
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 9.0%
Average: 9.6%
Dependent repos count: 10.2%
Last synced: 6 months ago
pypi.org: colossalai-nightly

An integrated large-scale model training system with efficient parallelization techniques

  • Versions: 116
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 381 Last month
Rankings
Downloads: 5.8%
Dependent packages count: 6.6%
Average: 14.3%
Dependent repos count: 30.6%
Maintainers (1)
Last synced: 6 months ago
pypi.org: custom-colossalai

An integrated large-scale model training system with efficient parallelization techniques

  • Versions: 16
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 18 Last month
Rankings
Dependent packages count: 10.1%
Average: 33.5%
Dependent repos count: 56.9%
Maintainers (1)
Last synced: 6 months ago

Dependencies

.github/workflows/close_inactive.yml actions
  • actions/stale v3 composite
.github/workflows/report_test_coverage.yml actions
  • actions/github-script v6 composite
  • irongut/CodeCoverageSummary v1.3.0 composite
.github/workflows/submodule.yml actions
  • actions/checkout v2 composite
  • peter-evans/create-pull-request v3 composite
.github/workflows/translate_comment.yml actions
  • usthe/issues-translate-action v2.7 composite
docker/Dockerfile docker
  • hpcaitech/cuda-conda 11.3 build
examples/images/diffusion/docker/Dockerfile docker
  • hpcaitech/pytorch-cuda 1.12.0-11.3.0 build
examples/images/diffusion/requirements.txt pypi
  • albumentations ==1.3.0
  • colossalai *
  • datasets *
  • einops ==0.3.0
  • gradio ==3.11
  • imageio ==2.9.0
  • imageio-ffmpeg ==0.4.2
  • omegaconf ==2.1.1
  • open-clip-torch ==2.7.0
  • opencv-python ==4.6.0
  • prefetch_generator *
  • pudb ==2019.2
  • streamlit >=0.73.1
  • test-tube >=0.7.5
  • torchmetrics ==0.6
  • transformers ==4.19.2
  • webdataset ==0.2.5
examples/images/diffusion/setup.py pypi
  • numpy *
  • torch *
  • tqdm *
examples/images/dreambooth/requirements.txt pypi
  • accelerate *
  • colossalai *
  • diffusers >==0.5.0
  • ftfy *
  • modelcards *
  • tensorboard *
  • torchvision *
  • transformers >=4.21.0
examples/images/vit/requirements.txt pypi
  • colossalai >=0.1.12
  • numpy >=1.24.1
  • timm >=0.6.12
  • titans >=0.0.7
  • torch >=1.8.1
  • tqdm >=4.61.2
  • transformers >=4.25.1
examples/language/gpt/experiments/auto_parallel/requirements.txt pypi
  • PuLP >=2.7.0
  • colossalai >=0.1.12
  • torch >=1.8.1
  • transformers >=4.231
examples/language/gpt/experiments/pipeline_parallel/requirements.txt pypi
  • colossalai >=0.1.12
  • torch >=1.8.1
examples/language/gpt/gemini/requirements.txt pypi
  • colossalai >=0.1.12
  • torch >=1.8.1
examples/language/gpt/requirements.txt pypi
  • colossalai *
  • transformers >=4.23
examples/language/gpt/titans/requirements.txt pypi
  • colossalai ==0.2.0
  • titans ==0.0.7
  • torch ==1.12.1
examples/language/opt/requirements.txt pypi
  • colossalai >=0.1.12
  • torch >=1.8.1
examples/language/palm/requirements.txt pypi
  • colossalai >=0.1.12
  • torch >=1.8.1
examples/tutorial/auto_parallel/requirements.txt pypi
  • colossalai *
  • datasets *
  • matplotlib *
  • pulp *
  • titans *
  • torch *
  • transformers *
examples/tutorial/auto_parallel/setup.py pypi
  • numpy *
  • torch *
  • tqdm *
examples/tutorial/hybrid_parallel/requirements.txt pypi
  • colossalai *
  • titans *
  • torch *
examples/tutorial/large_batch_optimizer/requirements.txt pypi
  • colossalai *
  • titans *
  • torch *
examples/tutorial/opt/inference/requirements.txt pypi
  • colossalai *
  • fastapi ==0.85.1
  • locust ==2.11.0
  • pydantic ==1.10.2
  • sanic ==22.9.0
  • sanic_ext ==22.9.0
  • torch >=1.10.0
  • transformers ==4.23.1
  • uvicorn ==0.19.0
examples/tutorial/opt/opt/requirements.txt pypi
  • accelerate ==0.13.2
  • colossalai *
  • datasets >=1.8.0
  • protobuf *
  • sentencepiece *
  • torch >=1.8.1
examples/tutorial/requirements.txt pypi
  • colossalai >=0.1.12
  • torch >=1.8.1
examples/tutorial/sequence_parallel/requirements.txt pypi
  • colossalai *
  • torch *
requirements/requirements-test.txt pypi
  • contexttimer * test
  • einops * test
  • fbgemm-gpu ==0.2.0 test
  • flash_attn c422fee3776eb3ea24e011ef641fd5fbeb212623 test
  • pytest * test
  • pytest-cov * test
  • timm * test
  • titans * test
  • torchaudio * test
  • torchrec ==0.2.0 test
  • torchvision * test
  • transformers * test
  • triton ==2.0.0.dev20221011 test
requirements/requirements.txt pypi
  • click *
  • contexttimer *
  • fabric *
  • ninja *
  • numpy *
  • packaging *
  • pre-commit *
  • psutil *
  • rich *
  • tqdm *
.github/workflows/build_on_pr.yml actions
  • actions/checkout v2 composite
  • actions/upload-artifact v3 composite
  • tj-actions/changed-files v35 composite
.github/workflows/build_on_schedule.yml actions
  • actions/checkout v2 composite
.github/workflows/compatiblity_test_on_dispatch.yml actions
  • actions/checkout v2 composite
.github/workflows/compatiblity_test_on_pr.yml actions
  • actions/checkout v3 composite
  • actions/checkout v2 composite
.github/workflows/compatiblity_test_on_schedule.yml actions
  • actions/checkout v3 composite
  • actions/checkout v2 composite
.github/workflows/cuda_ext_check_before_merge.yml actions
  • actions/checkout v3 composite
  • actions/checkout v2 composite
.github/workflows/doc_build_on_schedule_after_release.yml actions
.github/workflows/doc_check_on_pr.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
.github/workflows/doc_test_on_pr.yml actions
  • actions/checkout v3 composite
  • actions/checkout v2 composite
  • tj-actions/changed-files v35 composite
.github/workflows/doc_test_on_schedule.yml actions
  • actions/checkout v2 composite
  • actions/checkout v3 composite
.github/workflows/draft_github_release_post_after_merge.yml actions
  • actions/checkout v2 composite
  • actions/create-release v1 composite
  • actions/setup-python v2 composite
.github/workflows/example_check_on_dispatch.yml actions
  • actions/checkout v3 composite
.github/workflows/example_check_on_pr.yml actions
  • actions/checkout v3 composite
  • tj-actions/changed-files v35 composite
.github/workflows/example_check_on_schedule.yml actions
  • actions/checkout v3 composite
.github/workflows/post_commit.yml actions
  • actions/cache v3 composite
  • actions/checkout v2 composite
  • actions/setup-python v3 composite
  • peter-evans/create-pull-request v4 composite
  • peter-evans/enable-pull-request-automerge v2 composite
  • tj-actions/changed-files v35 composite
.github/workflows/release_docker_after_publish.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
  • docker/login-action f054a8b539a109f9f41c372932f1ae047eff08c9 composite
.github/workflows/release_nightly_on_schedule.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
  • pypa/gh-action-pypi-publish release/v1 composite
.github/workflows/release_pypi_after_merge.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
  • pypa/gh-action-pypi-publish release/v1 composite
.github/workflows/release_test_pypi_before_merge.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
  • pypa/gh-action-pypi-publish release/v1 composite
.github/workflows/report_leaderboard_to_lark.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
.github/workflows/run_chatgpt_examples.yml actions
  • actions/checkout v2 composite
.github/workflows/run_chatgpt_unit_tests.yml actions
  • actions/checkout v2 composite
docs/versions.json meteor
applications/Chat/examples/ray/requirements.txt pypi
  • ray *
applications/Chat/examples/requirements.txt pypi
  • colossalai >=0.3.1
  • pandas >=1.4.1
  • sentencepiece *
applications/Chat/inference/requirements.txt pypi
  • accelerate *
  • bitsandbytes *
  • fastapi *
  • jieba *
  • locust *
  • numpy *
  • pydantic *
  • safetensors *
  • slowapi *
  • sse_starlette *
  • torch *
  • uvicorn *
applications/Chat/requirements-test.txt pypi
  • colossalai >=0.3.1 test
  • pytest * test
applications/Chat/requirements.txt pypi
  • colossalai >=0.3.1
  • datasets *
  • fastapi *
  • gpustat *
  • langchain *
  • loralib *
  • sentencepiece *
  • sse_starlette *
  • tensorboard *
  • tokenizers *
  • torch <2.0.0,>=1.12.1
  • tqdm *
  • transformers >=4.20.1
  • wandb *
applications/Chat/setup.py pypi
docs/requirements-doc-test.txt pypi
  • colossalai * test
  • packaging * test
  • psutil * test
  • pytest * test
  • tensornvme * test
  • torch * test
  • transformers * test
examples/community/roberta/requirements.txt pypi
  • colossalai >=0.1.12
  • h5py *
  • numpy *
  • tensorboard *
  • torch >=1.8.1
  • tqdm *
  • wandb *
examples/images/resnet/requirements.txt pypi
  • colossalai *
  • pytest *
  • torch *
  • torchvision *
  • tqdm *
examples/language/bert/requirements.txt pypi
  • colossalai *
  • datasets *
  • evaluate *
  • ptflops *
  • scikit-learn *
  • scipy *
  • torch *
  • tqdm *
  • transformers *
examples/language/gpt/experiments/auto_offload/requirements.txt pypi
  • colossalai >=0.1.12
  • torch >=1.8.1
examples/language/llama2/requirements.txt pypi
  • SentencePiece ==0.1.99
  • colossalai >=0.3.2
  • datasets *
  • flash-attn >=2.0.0,<=2.0.5
  • numpy *
  • tensorboard ==2.14.0
  • torch >=1.12.0,<=2.0.0
  • tqdm *
  • transformers *
examples/tutorial/new_api/cifar_resnet/requirements.txt pypi
  • colossalai *
  • torch *
  • torchvision *
  • tqdm *
examples/tutorial/new_api/cifar_vit/requirements.txt pypi
  • colossalai *
  • timm *
  • torch *
  • torchvision *
  • tqdm *
examples/tutorial/new_api/glue_bert/requirements.txt pypi
  • colossalai *
  • datasets *
  • scikit-learn *
  • scipy *
  • torch *
  • tqdm *
  • transformers *
setup.py pypi
.github/workflows/run_colossalqa_unit_tests.yml actions
  • actions/checkout v2 composite
colossalai/legacy/inference/serving/torch_serve/docker/Dockerfile docker
  • hpcaitech/pytorch-cuda 1.13.0-11.6.0 build
applications/Colossal-LLaMA-2/requirements.txt pypi
  • autoflake ==2.2.1
  • black ==23.9.1
  • colossalai ==0.3.2
  • datasets *
  • flash-attn >=2.0.0,<=2.0.5
  • ninja ==1.11.1
  • packaging ==23.1
  • protobuf <=3.20.0
  • sentencepiece ==0.1.99
  • six ==1.16.0
  • tensorboard ==2.14.0
  • torch <2.0.0,>=1.12.1
  • tqdm *
  • transformers *
applications/ColossalEval/requirements.txt pypi
  • colossalai >=0.3.4
  • fuzzywuzzy *
  • jieba *
  • matplotlib *
  • openai *
  • pandas *
  • peft *
  • rouge *
  • scikit-learn *
  • seaborn *
  • tabulate *
  • transformers >=4.32.0
applications/ColossalEval/setup.py pypi
applications/ColossalQA/examples/webui_demo/requirements.txt pypi
  • fastapi ==0.99.1
  • pydantic ==1.10.13
  • uvicorn >=0.24.0
applications/ColossalQA/requirements.txt pypi
  • Requests ==2.31.0
  • chromadb ==0.4.9
  • datasets ==2.13.0
  • gpustat ==1.1.1
  • gradio ==3.44.4
  • jq ==1.6.0
  • langchain ==0.0.330
  • langchain-experimental ==0.0.37
  • modelscope ==1.9.0
  • openai ==0.28.0
  • pypdf ==3.16.0
  • pytest ==7.4.2
  • sentence-transformers ==2.2.2
  • sentencepiece ==0.1.99
  • sqlalchemy ==2.0.20
  • tiktoken ==0.5.1
  • tokenizers ==0.13.3
  • torch <2.0.0,>=1.12.1
  • tqdm ==4.66.1
  • transformers >=4.20.1
  • unstructured ==0.10.14
applications/ColossalQA/setup.py pypi
examples/language/openmoe/requirements.txt pypi
  • colossalai >=0.3.3
  • datasets *
  • sentencepiece *
  • torch >=1.8.1
  • transformers >=4.20.0,<=4.34.0
requirements/requirements-infer.txt pypi
  • auto-gptq ==0.5.0
  • transformers ==4.34.0
examples/images/diffusion/environment.yaml conda
  • cudatoolkit 11.3.*
  • numpy 1.23.1.*
  • pip 20.3.*
  • python 3.9.12.*
  • pytorch 1.12.1.*
  • torchvision 0.13.1.*
applications/ColossalMoE/requirements.txt pypi
  • colossalai >=0.3.3
  • datasets *
  • sentencepiece *
  • torch >=1.8.1
  • transformers ==4.36.0
applications/ColossalMoE/setup.py pypi