https://github.com/wolph/numpy-stl
Simple library to make working with STL files (and 3D objects in general) fast and easy.
Science Score: 36.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
✓Committers with academic emails
2 of 27 committers (7.4%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (16.1%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
Simple library to make working with STL files (and 3D objects in general) fast and easy.
Basic Info
- Host: GitHub
- Owner: wolph
- License: bsd-3-clause
- Language: Python
- Default Branch: develop
- Homepage: http://numpy-stl.readthedocs.org/
- Size: 1.31 MB
Statistics
- Stars: 662
- Watchers: 33
- Forks: 110
- Open Issues: 0
- Releases: 29
Topics
Metadata Files
README.rst
numpy-stl
==============================================================================
.. image:: https://github.com/WoLpH/numpy-stl/actions/workflows/main.yml/badge.svg?branch=master
:alt: numpy-stl test status
:target: https://github.com/WoLpH/numpy-stl/actions/workflows/main.yml
.. image:: https://ci.appveyor.com/api/projects/status/cbv7ak2i59wf3lpj?svg=true
:alt: numpy-stl test status
:target: https://ci.appveyor.com/project/WoLpH/numpy-stl
.. image:: https://badge.fury.io/py/numpy-stl.svg
:alt: numpy-stl Pypi version
:target: https://pypi.python.org/pypi/numpy-stl
.. image:: https://coveralls.io/repos/WoLpH/numpy-stl/badge.svg?branch=master
:alt: numpy-stl code coverage
:target: https://coveralls.io/r/WoLpH/numpy-stl?branch=master
.. image:: https://img.shields.io/pypi/pyversions/numpy-stl.svg
Simple library to make working with STL files (and 3D objects in general) fast
and easy.
Due to all operations heavily relying on `numpy` this is one of the fastest
STL editing libraries for Python available.
Security contact information
------------------------------------------------------------------------------
To report a security vulnerability, please use the
`Tidelift security contact `_.
Tidelift will coordinate the fix and disclosure.
Issues
------
If you encounter any issues, make sure you report them `here `_. Be sure to search for existing issues however. Many issues have been covered before.
While this project uses `numpy` as it's main dependency, it is not in any way affiliated to the `numpy` project or the NumFocus organisation.
Links
-----
- The source: https://github.com/WoLpH/numpy-stl
- Project page: https://pypi.python.org/pypi/numpy-stl
- Reporting bugs: https://github.com/WoLpH/numpy-stl/issues
- Documentation: http://numpy-stl.readthedocs.org/en/latest/
- My blog: https://wol.ph/
Requirements for installing:
------------------------------------------------------------------------------
- `numpy`_ any recent version
- `python-utils`_ version 1.6 or greater
Installation:
------------------------------------------------------------------------------
`pip install numpy-stl`
Initial usage:
------------------------------------------------------------------------------
After installing the package, you should be able to run the following commands
similar to how you can run `pip`.
.. code-block:: shell
$ stl2bin your_ascii_stl_file.stl new_binary_stl_file.stl
$ stl2ascii your_binary_stl_file.stl new_ascii_stl_file.stl
$ stl your_ascii_stl_file.stl new_binary_stl_file.stl
Contributing:
------------------------------------------------------------------------------
Contributions are always welcome. Please view the guidelines to get started:
https://github.com/WoLpH/numpy-stl/blob/develop/CONTRIBUTING.rst
Quickstart
------------------------------------------------------------------------------
.. code-block:: python
import numpy
from stl import mesh
# Using an existing stl file:
your_mesh = mesh.Mesh.from_file('some_file.stl')
# Or creating a new mesh (make sure not to overwrite the `mesh` import by
# naming it `mesh`):
VERTICE_COUNT = 100
data = numpy.zeros(VERTICE_COUNT, dtype=mesh.Mesh.dtype)
your_mesh = mesh.Mesh(data, remove_empty_areas=False)
# The mesh normals (calculated automatically)
your_mesh.normals
# The mesh vectors
your_mesh.v0, your_mesh.v1, your_mesh.v2
# Accessing individual points (concatenation of v0, v1 and v2 in triplets)
assert (your_mesh.points[0][0:3] == your_mesh.v0[0]).all()
assert (your_mesh.points[0][3:6] == your_mesh.v1[0]).all()
assert (your_mesh.points[0][6:9] == your_mesh.v2[0]).all()
assert (your_mesh.points[1][0:3] == your_mesh.v0[1]).all()
your_mesh.save('new_stl_file.stl')
Plotting using `matplotlib`_ is equally easy:
------------------------------------------------------------------------------
.. code-block:: python
from stl import mesh
from mpl_toolkits import mplot3d
from matplotlib import pyplot
# Create a new plot
figure = pyplot.figure()
axes = figure.add_subplot(projection='3d')
# Load the STL files and add the vectors to the plot
your_mesh = mesh.Mesh.from_file('tests/stl_binary/HalfDonut.stl')
axes.add_collection3d(mplot3d.art3d.Poly3DCollection(your_mesh.vectors))
# Auto scale to the mesh size
scale = your_mesh.points.flatten()
axes.auto_scale_xyz(scale, scale, scale)
# Show the plot to the screen
pyplot.show()
.. _numpy: http://numpy.org/
.. _matplotlib: http://matplotlib.org/
.. _python-utils: https://github.com/WoLpH/python-utils
Experimental support for reading 3MF files
------------------------------------------------------------------------------
.. code-block:: python
import pathlib
import stl
path = pathlib.Path('tests/3mf/Moon.3mf')
# Load the 3MF file
for m in stl.Mesh.from_3mf_file(path):
# Do something with the mesh
print('mesh', m)
Note that this is still experimental and may not work for all 3MF files.
Additionally it only allows reading 3mf files, not writing them.
Modifying Mesh objects
------------------------------------------------------------------------------
.. code-block:: python
from stl import mesh
import math
import numpy
# Create 3 faces of a cube
data = numpy.zeros(6, dtype=mesh.Mesh.dtype)
# Top of the cube
data['vectors'][0] = numpy.array([[0, 1, 1],
[1, 0, 1],
[0, 0, 1]])
data['vectors'][1] = numpy.array([[1, 0, 1],
[0, 1, 1],
[1, 1, 1]])
# Front face
data['vectors'][2] = numpy.array([[1, 0, 0],
[1, 0, 1],
[1, 1, 0]])
data['vectors'][3] = numpy.array([[1, 1, 1],
[1, 0, 1],
[1, 1, 0]])
# Left face
data['vectors'][4] = numpy.array([[0, 0, 0],
[1, 0, 0],
[1, 0, 1]])
data['vectors'][5] = numpy.array([[0, 0, 0],
[0, 0, 1],
[1, 0, 1]])
# Since the cube faces are from 0 to 1 we can move it to the middle by
# substracting .5
data['vectors'] -= .5
# Generate 4 different meshes so we can rotate them later
meshes = [mesh.Mesh(data.copy()) for _ in range(4)]
# Rotate 90 degrees over the Y axis
meshes[0].rotate([0.0, 0.5, 0.0], math.radians(90))
# Translate 2 points over the X axis
meshes[1].x += 2
# Rotate 90 degrees over the X axis
meshes[2].rotate([0.5, 0.0, 0.0], math.radians(90))
# Translate 2 points over the X and Y points
meshes[2].x += 2
meshes[2].y += 2
# Rotate 90 degrees over the X and Y axis
meshes[3].rotate([0.5, 0.0, 0.0], math.radians(90))
meshes[3].rotate([0.0, 0.5, 0.0], math.radians(90))
# Translate 2 points over the Y axis
meshes[3].y += 2
# Optionally render the rotated cube faces
from matplotlib import pyplot
from mpl_toolkits import mplot3d
# Create a new plot
figure = pyplot.figure()
axes = figure.add_subplot(projection='3d')
# Render the cube faces
for m in meshes:
axes.add_collection3d(mplot3d.art3d.Poly3DCollection(m.vectors))
# Auto scale to the mesh size
scale = numpy.concatenate([m.points for m in meshes]).flatten()
axes.auto_scale_xyz(scale, scale, scale)
# Show the plot to the screen
pyplot.show()
Extending Mesh objects
------------------------------------------------------------------------------
.. code-block:: python
from stl import mesh
import math
import numpy
# Create 3 faces of a cube
data = numpy.zeros(6, dtype=mesh.Mesh.dtype)
# Top of the cube
data['vectors'][0] = numpy.array([[0, 1, 1],
[1, 0, 1],
[0, 0, 1]])
data['vectors'][1] = numpy.array([[1, 0, 1],
[0, 1, 1],
[1, 1, 1]])
# Front face
data['vectors'][2] = numpy.array([[1, 0, 0],
[1, 0, 1],
[1, 1, 0]])
data['vectors'][3] = numpy.array([[1, 1, 1],
[1, 0, 1],
[1, 1, 0]])
# Left face
data['vectors'][4] = numpy.array([[0, 0, 0],
[1, 0, 0],
[1, 0, 1]])
data['vectors'][5] = numpy.array([[0, 0, 0],
[0, 0, 1],
[1, 0, 1]])
# Since the cube faces are from 0 to 1 we can move it to the middle by
# substracting .5
data['vectors'] -= .5
cube_back = mesh.Mesh(data.copy())
cube_front = mesh.Mesh(data.copy())
# Rotate 90 degrees over the X axis followed by the Y axis followed by the
# X axis
cube_back.rotate([0.5, 0.0, 0.0], math.radians(90))
cube_back.rotate([0.0, 0.5, 0.0], math.radians(90))
cube_back.rotate([0.5, 0.0, 0.0], math.radians(90))
cube = mesh.Mesh(numpy.concatenate([
cube_back.data.copy(),
cube_front.data.copy(),
]))
# Optionally render the rotated cube faces
from matplotlib import pyplot
from mpl_toolkits import mplot3d
# Create a new plot
figure = pyplot.figure()
axes = figure.add_subplot(projection='3d')
# Render the cube
axes.add_collection3d(mplot3d.art3d.Poly3DCollection(cube.vectors))
# Auto scale to the mesh size
scale = cube_back.points.flatten()
axes.auto_scale_xyz(scale, scale, scale)
# Show the plot to the screen
pyplot.show()
Creating a single triangle
----------------------------------
.. code-block:: python
import numpy
from stl import mesh
# A unit triangle
tri_vectors = [[0,0,0],[0,1,0],[0,0,1]]
# Create the vector data. It’s a numpy structured array with N entries, where N is the number of triangles (here N=1), and each entry is in the format ('normals','vectors','attr')
data = numpy.array([(
0, # Set 'normals' to zero, and the mesh class will automatically calculate them at initialization
tri_vectors, # 'vectors'
0 # 'attr'
)], dtype = mesh.Mesh.dtype) # The structure defined by the mesh class (N x ('normals','vectors','attr'))
# Create the mesh object from the structured array
tri_mesh = mesh.Mesh(data)
# Optionally make a plot for fun
# Load the plot tools
from matplotlib import pyplot
from mpl_toolkits import mplot3d
# Create a new plot
figure = pyplot.figure()
axes = figure.add_subplot(projection='3d')
# Add mesh to plot
axes.add_collection3d(mplot3d.art3d.Poly3DCollection(tri_mesh.vectors)) # Just need the 'vectors' attribute for display
Creating Mesh objects from a list of vertices and faces
------------------------------------------------------------------------------
.. code-block:: python
import numpy as np
from stl import mesh
# Define the 8 vertices of the cube
vertices = np.array([\
[-1, -1, -1],
[+1, -1, -1],
[+1, +1, -1],
[-1, +1, -1],
[-1, -1, +1],
[+1, -1, +1],
[+1, +1, +1],
[-1, +1, +1]])
# Define the 12 triangles composing the cube
faces = np.array([\
[0,3,1],
[1,3,2],
[0,4,7],
[0,7,3],
[4,5,6],
[4,6,7],
[5,1,2],
[5,2,6],
[2,3,6],
[3,7,6],
[0,1,5],
[0,5,4]])
# Create the mesh
cube = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
for i, f in enumerate(faces):
for j in range(3):
cube.vectors[i][j] = vertices[f[j],:]
# Write the mesh to file "cube.stl"
cube.save('cube.stl')
Evaluating Mesh properties (Volume, Center of gravity, Inertia, Convexity)
------------------------------------------------------------------------------
.. code-block:: python
import numpy as np
from stl import mesh
# Using an existing closed stl file:
your_mesh = mesh.Mesh.from_file('some_file.stl')
volume, cog, inertia = your_mesh.get_mass_properties()
print("Volume = {0}".format(volume))
print("Position of the center of gravity (COG) = {0}".format(cog))
print("Inertia matrix at expressed at the COG = {0}".format(inertia[0,:]))
print(" {0}".format(inertia[1,:]))
print(" {0}".format(inertia[2,:]))
print("Your mesh is convex: {0}".format(your_mesh.is_convex()))
Combining multiple STL files
------------------------------------------------------------------------------
.. code-block:: python
import math
import stl
from stl import mesh
import numpy
# find the max dimensions, so we can know the bounding box, getting the height,
# width, length (because these are the step size)...
def find_mins_maxs(obj):
minx = obj.x.min()
maxx = obj.x.max()
miny = obj.y.min()
maxy = obj.y.max()
minz = obj.z.min()
maxz = obj.z.max()
return minx, maxx, miny, maxy, minz, maxz
def translate(_solid, step, padding, multiplier, axis):
if 'x' == axis:
items = 0, 3, 6
elif 'y' == axis:
items = 1, 4, 7
elif 'z' == axis:
items = 2, 5, 8
else:
raise RuntimeError('Unknown axis %r, expected x, y or z' % axis)
# _solid.points.shape == [:, ((x, y, z), (x, y, z), (x, y, z))]
_solid.points[:, items] += (step * multiplier) + (padding * multiplier)
def copy_obj(obj, dims, num_rows, num_cols, num_layers):
w, l, h = dims
copies = []
for layer in range(num_layers):
for row in range(num_rows):
for col in range(num_cols):
# skip the position where original being copied is
if row == 0 and col == 0 and layer == 0:
continue
_copy = mesh.Mesh(obj.data.copy())
# pad the space between objects by 10% of the dimension being
# translated
if col != 0:
translate(_copy, w, w / 10., col, 'x')
if row != 0:
translate(_copy, l, l / 10., row, 'y')
if layer != 0:
translate(_copy, h, h / 10., layer, 'z')
copies.append(_copy)
return copies
# Using an existing stl file:
main_body = mesh.Mesh.from_file('ball_and_socket_simplified_-_main_body.stl')
# rotate along Y
main_body.rotate([0.0, 0.5, 0.0], math.radians(90))
minx, maxx, miny, maxy, minz, maxz = find_mins_maxs(main_body)
w1 = maxx - minx
l1 = maxy - miny
h1 = maxz - minz
copies = copy_obj(main_body, (w1, l1, h1), 2, 2, 1)
# I wanted to add another related STL to the final STL
twist_lock = mesh.Mesh.from_file('ball_and_socket_simplified_-_twist_lock.stl')
minx, maxx, miny, maxy, minz, maxz = find_mins_maxs(twist_lock)
w2 = maxx - minx
l2 = maxy - miny
h2 = maxz - minz
translate(twist_lock, w1, w1 / 10., 3, 'x')
copies2 = copy_obj(twist_lock, (w2, l2, h2), 2, 2, 1)
combined = mesh.Mesh(numpy.concatenate([main_body.data, twist_lock.data] +
[copy.data for copy in copies] +
[copy.data for copy in copies2]))
combined.save('combined.stl', mode=stl.Mode.ASCII) # save as ASCII
Known limitations
------------------------------------------------------------------------------
- When speedups are enabled the STL name is automatically converted to
lowercase.
Owner
- Name: Rick van Hattem
- Login: wolph
- Kind: user
- Location: Amsterdam
- Website: http://wol.ph/
- Repositories: 263
- Profile: https://github.com/wolph
Author of @mastering-python and entrepreneur interested in scaling large and complicated systems.
GitHub Events
Total
- Create event: 1
- Release event: 1
- Issues event: 8
- Watch event: 36
- Issue comment event: 28
- Push event: 12
- Pull request event: 11
- Fork event: 5
Last Year
- Create event: 1
- Release event: 1
- Issues event: 8
- Watch event: 36
- Issue comment event: 28
- Push event: 12
- Pull request event: 11
- Fork event: 5
Committers
Last synced: 9 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Rick van Hattem | W****h@w****h | 346 |
| Guillaume Jacquenot | g****t@g****m | 33 |
| Ilya V | n****s@g****m | 28 |
| Miro Hrončok | m****o@h****z | 15 |
| Nicholas Won | d****7@g****m | 7 |
| arthurlovekin | a****n@g****m | 5 |
| Nick Cloward | n****k@a****m | 2 |
| Hongbo Miao | H****o@o****m | 2 |
| Håkon Strandenes | h****s@k****o | 2 |
| Jean-Benoist Leger | j****r@h****r | 2 |
| bwoodsend | b****d@g****m | 2 |
| Laszlo Molnar | l****o@l****n | 1 |
| Andrew Lock | 6****k | 1 |
| Christian Sachs | s****n@g****m | 1 |
| Elijah Andrews | e****5@s****k | 1 |
| JBil8 | j****o@e****h | 1 |
| James Archer | j****r@h****m | 1 |
| Jeff Olander | 5****I | 1 |
| Jorge | 4****f | 1 |
| Karl Nilsson | k****n@g****m | 1 |
| Michal Suchanek | m****k@s****e | 1 |
| Oscar Gustafsson | o****n@g****m | 1 |
| Thomas BAUDIER | t****r@c****r | 1 |
| ZhaoKang | k****g@s****m | 1 |
| loicgasser | l****4@g****m | 1 |
| mamrehn | m****n | 1 |
| pyup-bot | g****t@p****o | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 99
- Total pull requests: 24
- Average time to close issues: 4 months
- Average time to close pull requests: 17 days
- Total issue authors: 92
- Total pull request authors: 18
- Average comments per issue: 3.46
- Average comments per pull request: 3.21
- Merged pull requests: 19
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 3
- Pull requests: 8
- Average time to close issues: 27 days
- Average time to close pull requests: 13 days
- Issue authors: 3
- Pull request authors: 5
- Average comments per issue: 5.0
- Average comments per pull request: 1.5
- Merged pull requests: 7
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- nilswagner (3)
- agen49 (2)
- VeiledTee (2)
- bwoodsend (2)
- omerenen (2)
- rasunag27 (2)
- nickc92 (1)
- andreasbuhr (1)
- diazGT94 (1)
- snowbugxs (1)
- DriesAllaerts (1)
- Occupied-Observer (1)
- yellowshippo (1)
- luoyu-123 (1)
- michpaulatto (1)
Pull Request Authors
- JeffreyOI (4)
- hakostra (2)
- bwoodsend (2)
- andrewjlock (2)
- JBil8 (2)
- arthurlovekin (2)
- hroncok (2)
- hramrach (2)
- Gjacquenot (1)
- oscargus (1)
- James-Archer (1)
- karl-nilsson (1)
- Skhawule (1)
- Xorgon (1)
- jorgectf (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 4
-
Total downloads:
- pypi 147,645 last-month
- Total docker downloads: 1,341
-
Total dependent packages: 62
(may contain duplicates) -
Total dependent repositories: 344
(may contain duplicates) - Total versions: 101
- Total maintainers: 2
pypi.org: numpy-stl
Library to make reading, writing and modifying both binary and ascii STL files easy.
- Homepage: https://github.com/WoLpH/numpy-stl/
- Documentation: https://numpy-stl.readthedocs.io/
- License: BSD
-
Latest release: 3.2.0
published about 1 year ago
Rankings
Maintainers (1)
alpine-edge: py3-numpy-stl-pyc
Precompiled Python bytecode for py3-numpy-stl
- Homepage: https://github.com/WoLpH/numpy-stl
- License: BSD-3-Clause
-
Latest release: 3.2.0-r0
published about 1 year ago
Rankings
Maintainers (1)
alpine-edge: py3-numpy-stl
Library for working with STLs
- Homepage: https://github.com/WoLpH/numpy-stl
- License: BSD-3-Clause
-
Latest release: 3.2.0-r0
published about 1 year ago
Rankings
Maintainers (1)
conda-forge.org: numpy-stl
Simple library to make working with STL files (and 3D objects in general) fast and easy. Due to all operations heavily relying on numpy this is one of the fastest STL editing libraries for Python available.
- Homepage: https://github.com/WoLpH/numpy-stl
- License: BSD-3-Clause
-
Latest release: 2.17.1
published over 3 years ago
Rankings
Dependencies
- mock *
- python-utils *
- numpy *
- python-utils >=1.6.2
- Sphinx * test
- cov-core * test
- coverage * test
- cython * test
- docutils * test
- execnet * test
- flake8 * test
- numpy * test
- pep8 * test
- py * test
- pyflakes * test
- pytest * test
- pytest-cache * test
- pytest-cov * test
- pytest-flake8 * test
- python-utils * test
- wheel * test
- actions/checkout v3 composite
- github/codeql-action/analyze v2 composite
- github/codeql-action/autobuild v2 composite
- github/codeql-action/init v2 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite